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Abstract.

When measurements of relative abundances or proportions are made on biological systems, reg-

ular patterns, related to the ordered broken-stick series, are sometimes observed. In this paper we

show that these patterns arise predominantly because of the underlying mathematics of proportions.

We also find that the detailed structure of the pattern may give information about the biology of the

system being studied.

1 Introduction

In describing samples from natural populations, use is often made of the relative abundances pi,

where pi is the proportion of a sample or population belonging to the ith species. Relative abun-

dances are used to define more sophisticated quantities such as the diversity or the equitability. In

this paper natural logarithms are used, so for a system of S species, the biological diversity D and

the equitability E are defined by the equations,

D = −
S∑

i=1

pi loge pi, (1.1)

E = D/loge S. (1.2)

Diversity and equitability are used in comparing different biological systems and they may be rele-

vant to the stability of such systems (Margalef, 1969; Deevey, 1969).

If relative abundances or related quantities are plotted in a suitable manner, regular patterns may

be observed. Thus Preston (1948, 1962a,b) found that species abundance curves often follow a

log-normal curve and MacArthur (1957), found that bird censuses from tropical forests and many

1



temperate regions followed an ”ordered broken-stick series”1. Similarly Longuet-Higgins (1971) has

shown that the diversity of Tramer’s (1969) breeding bird populations is similar to that calculated

from the ordered broken-stick series.

In trying to understand the reason for these regularities, a number of models have been inves-

tigated. MacArthur (1957) showed that if the environment consisted of a set of non-overlapping

niches, chosen in a particular way, then the ordered broken-stick series resulted. However Cohen

(1968) showed that other models could give rise to the same series. Thus the relevance of the ordered

broken-stick series remained unexplained. However it has been suggested that agreement with the

ordered broken-stick distribution indicated ordering in the biological system (Deevey, 1969; King,

1964).

In this paper, we show that the similarity observed between some biological systems and the

ordered broken-stick series arises essentially from the initial choice to work with proportions. This

is because the mathematics of a broken-stick and the mathematics of proportions are just two ways

of looking at what is mathematically the same thing.

We shall approach the subject from the point of view of proportionality space, that is the space of

the p’s. Thus in sections 2 and 3 some of the basic properties of the space are discussed. In particular

the mean values of quantities such as the diversity are calculated. The results obtained are very

similar to those obtained directly from the ordered broken-stick series by Longuet-Higgins (1971).

In section 4, the idea of taking averages over the space is developed, to investigate the distribution

of both the diversity and the logarithmic standard deviation. It is found that these quantities are

concentrated in a very narrow region around their mean values.

The process of taking averages can itself be looked on as a model in which we assume that the

biological system is equally likely to be represented by any point in the space. Because of the

context, we shall call this the ’proportionality space model’. It is equivalent to the ’broken-stick

model’ used in statistics.

In section 5 the results of earlier sections are compared with measurements from a number of bio-

logical systems. One would expect to find most agreement with biological systems which similarly

have an equal chance of being represented by a point anywhere in the space. Conversely one would

expect to find disagreement if something in the biology constrains the system to a small region of

the space.

In fact we find that the amount of agreement is surprisingly large. We also find that where there is

significant disagreement, we are able to identify biological factors which constrain the system.

Finally the implications of these finding to the theoretical models of MacArthur and Cohen are

1If a stick of unit length is broken randomly into n pieces then the expected length of the ith shortest piece E<pi > is,

E<pi > =
1

n

i∑
j=1

1

n−j+1
.

The set of numbers E<p1 >, E<p2 >, ... , E<pn > is the ordered broken stick series.
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Fig. 1. Three dimensional proportionality space showing the biologically realistic region.

considered.

2 Proportionality Space

2.1 Three Species Populations

In considering a biological sample or population containing three species, it is convenient to in-

troduce p1, p2 and p3 where pi is the proportion of the sample or population belonging to the ith

species. A three-dimensional proportionality space can be introduced, whose basis axes correspond

to each of the pi’s (Fig. 1). Any particular sample or population can be described by the sample

vector (p1,p2,p3).

To be realistic the p’s must satisfy the conditions,

p1+p2+p3 =1,

0≤ p1≤ 1, 0≤ p2≤ 1, 0≤ p3≤ 1. (2.1)

This biologically realistic region is a triangle with vertices at (1,0,0), (0,1,0) and (0,0,1), This is

shown in Fig. 2, which also shows the contours of biological diversity.
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Fig. 2. The biologically realistic space for three species, showing contours of the diversity. Points marked with
a cross correspond to the ordered broken-stick series (MacArthur, 1957) for three species.

2.2 Many Species Populations

For a larger number of species, say S species, one can again introduce the S-dimensional space of

the p’s. The biologically realistic portion of this space is defined by,

0≤ pi≤ 1, for i=1,2,...,S.
S∑

i=1

pi =1. (2.2)

If a stick of unit length is broken into S pieces then the lengths of the pieces satisfy the same set

of conditions. In fact one can show that the probability of breaking a stick randomly into S pieces

is equivalent to the problem of choosing a point at random in the biologically realistic portion of

S-dimensional proportionality space.

For the three-dimensional case, a result equivalent to this was obtained by Whitworth (1897). He

showed that the problem of breaking a stick up randomly into three pieces was equivalent to choosing

a point at random within an equilateral triangle. To do this he first assumed that the stick could be

broken only at one of a large, but finite, number of equally spaced points. One can then show that

the different ways in which the stick may be broken into three piece correspond to uniformly spaced

points in the triangle. The limit as the number of points at which the stick can be broken tends to

infinity corresponds to the broken stick problem. Then because of the uniform correspondence of the

two approaches, expectations calculated with the broken-stick model will corresponds to integrals

over the triangle.
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It is straightforward to extend Whitworth’s argument to the four dimensional space (a tetrahedron)

and to higher dimensional spaces2.

3 Mean properties of the Space

To calculate the mean properties of the biologically realistic space in S-dimensions, it is useful to

introduce the weighting function WS . This is useful because it is non-zero only in the biologically

realistic part of the space. It gives equal weight to each point in the space and is normalised to give

unity when integrated over the space (see Appendix 1).

WS(p1,...,pS)= (S−1)! δ
(
1−

S∑
i=1

pi

) S∏
i=1

θ(pi), (3.1)

where,

θ(x) = 1, if x≥ 0

= 0, if x< 0,

and δ(x) is the Dirac delta function (Dirac, 1930). This is defined so that,∫ ∞
−∞

f(x)δ(x)dx= f(0). (3.2)

This can now be used to obtain some useful results.

Consider an S species system, whose probability distribution is uniform throughout the space.

Then if FS(p)dp is the probability that the relative abundance of a particular species has a value

between p and p+dp, then,

FS(p)=FS(pS)=

∫
dpS−1...

∫
dp1WS(p1,...,pS). (3.3)

This integral is considered in Appendix 1. One find that,

FS(p)= (S−1)(1−p)S−2. (3.4)

If the number of species is large, then,

FS(p)∼S e−Sp. (3.5)

This is the same result as found by Longuet-Higgins (1971) for the ordered broken-stick series.

2The equivalence between the two approaches can readily be checked by calculating the mean length of the shortest stick
or the smallest relative abundance. The solution obtained by integrating over the biologically realistic S-dimensional space
(see Appendix II) is the same as that obtained by the more classical methods of treating the broken-stick problem.
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The mean diversity of the space DS , is given by,

DS = −
∫
dpS ...

∫
dp1WS(p1,...,pS)

S∑
i=1

pi loge pi, (3.6)

= −S
∫
dpS pS loge pS

∫
dpS−1...

∫
dp1WS(p1,...,pS),

= −S(S−1)

∫ 1

0

dpS pS loge pS (1−pS)S−2. (3.7)

Using the relation,

∫ 1

0

dxxS loge(1−x)=−
1

S+1

S+1∑
i=1

1

i
, (3.8)

one can show that3,

DS =

S∑
i=1

1

i
−1. (3.9)

If the number of species is large,

DS ∼ loge S−(1−γ). (3.10)

where γ=0.57721 56649... (Euler’s constant). Again this is the same asymptotic form as Longuet-

Higgins (1971) obtained for the ordered broken-stick series.

To illustrate the geometric properties of the space it is useful to calculate the mean value of r2,

where r is the distance from the centre of the space,

<r2> =

∫
dps ...

∫
dp1

S∑
i=1

(
pi−1/S

)2
Ws(p1,...,pS). (3.11)

This simplifies to,

<r2> =
1

S

S−1

S+1
. (3.12)

Comparing this with the maximum value that r2 can have, which is,

(r2)max = 1− 1

S
, (3.13)

one sees that when S is large, most of the volume must lie very near the centre of the space.

A direct comparison between proportionality space and Preston’s (1948) log-normal curves is

rather involved. However, it is straightforward to calculate the square of the logarithmic standard

3This result was originally obtained by H. Irrgang (personal communication).
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deviation σ, for,

σ2 =
1

S

S∑
i=1

(
loge pi−

1

S

S∑
j=1

loge pj
)2
. (3.14)

If the log-normal hypothesis is correct, then this is an estimate of the variance of the log-normal

distribution from which the sample was taken. The mean value of σ2 over the biologically realistic

space is given by,

<σ2> =

∫
dps ...

∫
dp1WS(p1,...,pS)

[
1

S

S∑
i=1

(
loge pi−

1

S

S∑
j=1

loge pj
)2]

. (3.15)

This simplifies to,

<σ2> =
S−1

S
× π

2

6
. (3.16)

4 The Distribution of Diversity and Log-normal Variance

Equations (3.9) and (3.10) show that the mean value of the diversity lies very near to its maximum

possible value, which is logeS. To learn more about the distribution of diversity, it was calculated

using a Monte-Carlo technique.

Points were chosen at random in the biologically realistic portion of the S-dimensional space.

This was done by using the analogy with the broken-stick problem. Thus for 16 species, 15 ran-

dom numbers4 between 0 and 1 were obtained and, together with 0 and 1 ranked in order of their

magnitude. The differences between adjacent values gave the 16 co-ordinates required.

The diversity of each point was calculated and the results used to create a histogram. This was

done for different numbers of species and the results are given in Fig. 3. For a given number of

species 99% (1%) of points had a diversity greater than that given by the curve marked 99% (1%).

The mean value obtained from Eqn. (3.9) is also shown.

The results indicate that the distribution of diversity is strongly peaked about its mean value. The

peak becomes narrower as the number of species increases.

A similar procedure was carried out to estimate the distribution of the logarithmic standard devi-

ation 5. The results are shown in Fig. 4. Again the distribution is peaked about its mean value and

the peak becomes narrower as the number of species is increased. We thus conclude that over most

of the space both the diversity and the logarithmic standard deviation lie within very narrow limits.

This means that if the random elements acting on a biological system are important enough so

that the system has a reasonable chance of being found in more than, say 5%, of the total volume of

4The method used here for Figs 3 and 4 differs from earlier versions in that more samples are generated so smoothing is
not needed. Also the random number generator ’ran2’ of Press et al. (2001) was used instead of the Knuth (1969) generator.

5Defined in Eqn. (3.14).
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Fig. 3. The probability distribution of diversity for different numbers of species S. <D> is the mean value
calculated from Eqn. 3.9. Each of the distributions was calculated using a Monte-Carlo technique with 224

samples, sorted into 1024 bins and plotted without smoothing. 99% (1%) of the samples had a diversity greater
than that given by the curve marked 99% (1%).

proportionality space, then many of the measurements made on the system will give results which

are near to the mean value of the space.

In the case of the diversity, one can see from Fig. 2 that part of the reason for this behaviour is that

low diversities are found only at the very edge of the space. There is however a more fundamental

reason for the behaviour which holds for any function that can be expanded in the form,

F =

S∑
i=1

f(pi). (4.1)

Let <F > be the mean value of the quantity. The variance about this mean value is,

< (F−<F >)2> = <F 2>−<F >2 . (4.2)
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Fig. 4. The probability distribution of logarithmetic standard deviation for different number of species S using
the same method as for Fig. 3. <σ2 >1/2 is the mean value calculated from Eqn. 3.16. 99% (1%) of the
samples had a diversity greater than that given by the curve marked 99% (1%).

Now,

<F > =

∫
dp1...

∫
dpS

[ S∑
i=1

f(pi)
]
W (p1,...,pS),

= S

∫
dp f(p)(S−1)(1 − p)S−2. (4.3)

<F 2> =

∫
dp1...

∫
dpS

[ S∑
i=1

f(pi)
]2
W (p1,...,pS),

= S

∫
dp f(p)2(S−1)(1−p)S−2

+S(S−1)

∫
dp

∫
dq f(p)f(q)(S−1)(S−2)(1−p−q)S−3. (4.4)

If the function f is reasonably well behaved then the second term in this expression is S times

larger than the first. Also the main contribution to the integral will come from the region where p or

q have the same order of magnitude as 1/S.

In this region,

(1−p−q)S−3 =(1−p)S−2(1−q)S−2(1+O(
1

S
).
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O(1/S) indicates that the correction terms will be in the form of a constant decided by S. Using

these properties,

<F 2> = S2
[∫

dp f(p)(S−1)(1−p)S−2
]2(

1+0
( 1
S

))
= <F >2

(
1+O

( 1
S

))
. (4.5)

Thus we obtain the result,

< (F−<F >2> = <F >2O
( 1
S

)
. (4.6)

Thus because of their mathematical properties, the functions which can be expanded in the form

of Eqn. (4.4) have a variance which decreases relative to <F >2 as the number of dimensions (or

species) increases. If the mean value, <F >, increases more slowly than S1/2, then the variance

will decrease. This is true for the diversity and for the logarithmic standard deviation.

This result implies that the functions have a limited range of values over most of proportionality

space. In the case of the diversity, low diversities are only found in the remote outer regions of the

biological space. Large values of the logarithmic standard deviation are also only found at the outer

surface of the space.

5 Comparison with Natural Systems

The importance of the mathematics discussed so far arises from the way it helps our understanding

of the patterns that arise in biological data. Figure 5 compares the 1 and 99% curves from Fig. 3,

with the diversity of the bird populations studied by Tramer (1969). Longuet-Higgins (1971) has

noted previously how the mean value of the diversity, for a given number of species, agrees with the

broken-stick distribution.

We now see that most of the points lie between the 1 and 99% lines. They are spread out over

the region and have a slight tendency to lie above the mean value. In terms of proportionality space,

these observations indicate that Tramer’s breeding bird populations are fairly uniformly distributed

over the space, with a slightly higher probability of lying near the centre of the space.

Figure 6 is made up of data from a number of other sources. Systems such as Red Sea corals and

the benthos of Kingston Harbour appear to be spread out over proportionality space. The same is

true of most of the copepod and other plankton samples from the Antarctic and Indian Oceans. The

exceptional samples, with low equitability, correspond to systems in the extreme outer regions of the

space. On inspection these samples were found to correspond to plankton blooms, dominated by a

few species.

Gueredrat (1971), studying copepods in the Equatorial Pacific observed a similar pattern. His

samples showed that the lowest diversity occurred in regions where the water was high in nutrients
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Fig. 5. A comparison of Tramer’s (1969) bird species diversity with the proportionality space distribution of
diversity.

and the primary productivity was large. As the systems became more mature the diversity was found

to increase.

The trees studied by Whittaker (1956), consistently have a low equitability. This is probably

related to the tendency of these trees to form stands of the same species, similar to, but not as

extreme as the plankton blooms.

It should be borne in mind that the results may be affected by the method of sampling. An example

shown here is Karr’s (1971) bird samples. These were each taken over the course of a whole year.

This procedure weights the samples in favour of resident species as compared with seasonal visitors

and thus tends to lower the equitability. At any one period during the year, the equitability within

each region would usually have been much higher.

Figure 7 compares the 1 and 99% curves from Fig. 4, with Preston’s plot of logarathmic standard

deviation σ (Preston, 1962a, Fig. 17). The samples studied by Preston were taken mainly from bird

populations. They fall into two groups. The group with large values of σ are concentrated in the
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Fig. 6. A comparison of the proportionality space distribution of diversity with samples from a number
of biological systems. ×, Red Sea corals (Loya, 1972); �, Benthos communities, Jamaica (Wade, 1972);
•, Antarctic copepods (Vervoort, 1957); N, Indian Ocean plankton (Tranter, personal communi-
cation); �, equatorial copepods (Gueredrat, 1971); ◦, Smokey mountain trees (Whittaker, 1956);
4, birds in Illinois and Panama (Karr, 1971).

outer regions of proportionality space. The group with a small value of σ is not so concentrated, but

the samples tend to lie near the centre of the space. Preston found that samples in the former group

included birds that were gregarious, while the samples in the latter group contained birds which

defended their territory.

We therefore conclude that a biological tendency for a species to be gregarious or form clumps,

drives the system into the outer reaches of proportionality space. Similarly a tendency to defend

territory or be infradispersed will act in the opposite direction. Plankton which except during blooms

are not known to be particularly gregarious or territorially minded appear to be uniformly spread over

the space. As Tramer’s (1969) and Preston’s (1962a) territory defending birds show only a slight

concentration towards the centre of the space, it seems probable that their territorial behaviour does
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Fig. 7. A comparison of the proportionality space distribution of logarithmic standard deviation, with the
samples considered by Preston (1962a, Fig. 17).

little more than neutralize their other biological tendency to form clumps, e.g. families of nestlings.

The behaviour of the plankton also imply that proportionality space may be biological neutral, in

the sense that a biological system is equally likely to be represented by any point in the space, unless

some biological process constrains the system.

6 The Theoretical Models

We have shown that as long as there is enough randomness in a biological system, one will obtain

reasonable agreement with the results of the ’proportionality space or broken-stick model’. In a

similar manner, the fact that the models of MacArthur and Cohen can also give the broken-stick

series arises not because of the biological principals that they used, but because they included enough

randomness.

The biological principals that they used, for example the concept of overlapping or non-overlapping

niches, may or may not still be correct. To test those principals it will be necessary to study in detail

those results, if any, predicted by the models which are not also predicted by the ’proportionality

space model’.
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Appendix I

To check to normalization, we consider the integral,

I =

∫
dpS

∫
dpS−1 ...

∫
dp1WS(p1, ..., pS), (A1)

=

∫ 1

0

dpS

∫ 1

0

dpS−1 ...

∫ 1

0

dp1 (S−1)! δ
(
1−

S∑
i=1

pi
)
,

= (S−1)!

∫ 1

0

dpS

∫ aS−1

0

dpS−1 ...

∫ a2

0

dp2 C2. (A2)

Where,

aj = 1−
S∑

i=j+1

pi,

and,

Cj =
1

(j−2)!
(aj−pj)j−2. (A3)

One can show that,∫ aj

0

dpj Cj = Cj+1. (A4)

Thus,

I =

∫ 1

0

dpS CS(S−1)!,

=

∫ 1

0

dpS (S−1)(1−pS)S−2,

=
[
−(1−pS)S−1

]1
0
.

∴ I = 1. (A5)

Thus the weighting function is properly normalized.

To calculate the distribution function for one co-ordinate we consider the integral,

FS(pS) =

∫
dpS−1 ...

∫
dp1WS(p1, ..., pS),

= (S−1)! CS .

∴FS(pS) = (S−1)(1−pS)S−2. (A6)
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Similarly the joint distribution for two coordinates is,

FS(pS ,pS−1) =

∫
dpS−2 ...

∫
dp1WS(p1, ..., pS),

= (S−1)! CS−1.

∴FS(pS ,pS−1) = (S−1)(S−2)(1−pS−pS−1)S−3. (A7)

Appendix II

Let s(p) be the probability distribution for the smallest stick. This will be S times the probability

that the Sth stick is the smallest. Thus,

s(p) = S

∫ 1

p

dpS−1 ...

∫ 1

p

dp1 WS(p1, ..., pS),

= S(S−1)!

∫ bS−1

p

dpS−1...

∫ 2

p

dp2 D2, (A8)

where,

bj = aj−(j−1)p,

and

Dj =
1

(j−2)!
(bj−pj)j−2. (A9)

One can show that,∫ bj

p

dpj Dj =Dj+1. (A10)

Thus,

s(p) = S(S−1)!DS .

∴ s(p) = S(S−1)(1−Sp)S−2. (A11)

This is the result obtained by the more usual methods (Barton & David, 1956).
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