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Preface 

This is a report to the Australian Government from CSIRO. It is an output of the Murray-Darling Basin Sustainable Yields 

Project which assessed current and potential future water availability in 18 regions across the Murray-Darling Basin 

(MDB) considering climate change and other risks to water resources. The project was commissioned following the 

Murray-Darling Basin Water Summit convened by the then Prime Minister of Australia in November 2006 to report 

progressively during the latter half of 2007. The reports for each of the 18 regions and for the entire MDB are supported 

by a series of technical reports detailing the modelling and assessment methods used in the project. This report is one of 

the supporting technical reports of the project. Project reports can be accessed at http://www.csiro.au/mdbsy.  

Project findings are expected to inform the establishment of a new sustainable diversion limit for surface and 

groundwater in the MDB – one of the responsibilities of a new Murray-Darling Basin Authority in formulating a new 

Murray-Darling Basin Plan, as required under the Commonwealth Water Act 2007. These reforms are a component of 

the Australian Government’s new national water plan ‘Water for our Future’. Amongst other objectives, the national water 

plan seeks to (i) address over-allocation in the MDB, helping to put it back on a sustainable track, significantly improving 

the health of rivers and wetlands of the MDB and bringing substantial benefits to irrigators and the community; and (ii) 

facilitate the modernisation of Australian irrigation, helping to put it on a more sustainable footing against the background 

of declining water resources. 

Executive Summary 

Background 

An important focus of the Murray-Darling Basin Sustainable Yields Project is proper accounting of surface–groundwater 

interactions. This document provides an overview of the surface–groundwater connectivity assessment conducted for 

this project. The connectivity assessment provides mapping information that links surface water (rivers) and groundwater 

resources. Understanding the extent of interaction is important, as management of these two resources should take into 

account the interconnection of the two systems. The connectivity mapping is a snapshot in time of fluxes to or from major 

rivers across the Murray-Darling Basin (MDB). It can serve as a check for the surface water modelling and groundwater 

modelling components of the project, which modelled the temporal dynamics of river–aquifer interactions. Further, areas 

subject to groundwater modelling represent a relatively small portion of the MDB (albeit a high proportion of groundwater 

usage), and therefore the connectivity mapping, covering 13 of the 18 regions in the project area, provides river–aquifer 

interaction information across most of the MDB. 

The connectivity mapping involved determining the direction and magnitude of groundwater flux to or from major rivers 

for most catchments within the project area, for a given point in time. The regions where connectivity mapping was 

conducted were: Loddon-Avoca, Campaspe, Goulburn-Broken, Ovens, Murray, Murrumbidgee, Lachlan, Macquarie-

Castlereagh, Namoi, Gwydir, Border Rivers, Condamine-Balonne and Barwon-Darling. The individual connectivity 

mapping reports are specifically focused on the results within each catchment. The purpose of this overview report is to 

describe the ‘big picture’ findings arising from the connectivity mapping.  

While only representing a ‘snapshot in time’ of surface–groundwater interaction, the connectivity maps nevertheless 

serve multiple purposes:  

• They provide an alternate approach (to the numerical models) to assessing surface–groundwater interactions 

across the MDB. This alternate methodology has some advantages over the numerical modelling, as discussed 

in this report. 

• They serve as a check of the surface water modelling and groundwater modelling components of the project.  

• They provide an initial (and sometimes rapid) assessment that can be used as the basis for more detailed 

conceptualisation as part of modelling.  

• They estimate interactions outside of the modelled areas, which represent a relatively small part of the MDB. 
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• They are a powerful visual aid, with significant communication and education value. A map is an ideal tool for 

initiating discussions and catalysing questions regarding surface–groundwater interactions. While the maps may 

be shown to be locally inaccurate compared to future work undertaken at a finer scale, they nevertheless serve 

a very useful purpose as a starting point for conceptualising surface–groundwater interactions. 

Methodology 

The method used to assess the connectivity was divided into two main tasks: assessing the direction of groundwater flux, 

and quantifying the magnitude of this flux. Assessment of the direction of the groundwater flux involved collating surface 

water and groundwater data, for a given point in time, and creating a watertable elevation surface (for the shallowest 

aquifer). An assessment of the flux direction was based on the shape of the water level surface along the river. The 

quantification of flux was based on a Darcian approach using the gradient between the river and water level in the aquifer. 

Flux units were ML/day/km. The type of connection depended on the difference between the head in the river and the 

watertable aquifer. The three basic categories were gaining streams, losing streams or hydraulically neutral streams (in 

practice this last category is likely to be seasonally varying). Gaining streams have by definition a saturated connection to 

the aquifer. Losing streams may have a saturated or unsaturated connection to the aquifer (also referred to as 

‘disconnected’). When unsaturated conditions are reached, losses from the river are at their maximum, and further 

decline in groundwater levels will not increase river losses. The point of reaching unsaturated conditions was determined 

based on an assumed relationship between aquifer hydraulic conductivity and river bed hydraulic conductivity. 

Hydraulically neutral conditions were defined when the hydraulic gradient between the stream and the groundwater 

system is very low and within the errors of the analysis. 

The accuracy of the connectivity mapping could potentially be improved, given additional time and budget or simply by 

taking a different approach (based on the benefit of experience gained during this project). Key sources of error which 

may have introduced inaccuracies to the direction and/or magnitude of the groundwater flux include: low bore density; 

inaccuracy of river elevation (particularly where the watertable is relatively shallow); variations in aquifer hydraulic 

conductivity; poorly defined river bed hydraulic conductivity; and near-river evapotranspiration effects. 

Results and key messages 

Generally the trends observed follow the conceptual interpretation of river–groundwater interaction developed by Braaten 

and Gates (2001). In each catchment there is a change in the river–groundwater interaction as the river leaves the 

relatively narrow palaeovalley and enters a broad alluvial plain. This is particularly evident in the Macquarie-Castlereagh, 

Murrumbidgee, Ovens, Campaspe, Goulburn-Broken and Loddon-Avoca regions. The general pattern observed is 

gaining conditions in the highland areas changing to variable gaining and losing conditions downstream within the 

palaeovalley. The fluxes change to medium to high losing conditions as the river enters the large alluvial plain before 

changing back to hydraulically neutral or low gaining conditions at the lower end of the catchment. In Victoria the lengths 

of losing reaches in the middle to lower part of the catchments tend to be shorter and the loss rates lower compared to 

New South Wales. 

Other catchments within the MDB, such as the Condamine-Balonne and Namoi regions, do not closely follow the 

Braaten and Gates conceptual model. Within these catchments the river leaves the highland areas and the bedrock 

palaeovalley and enters an upland alluvial plain with an increase in sediment thickness. Downstream the rivers pass 

through a bedrock restriction, where the alluvial sediments shallow and are once again confined within a relatively narrow 

bedrock palaeovalley. After passing through a further bedrock restriction the rivers enter a broad alluvial plain and turn 

towards the south-west to eventually join the Murray River. These catchments generally behave as two Braaten and 

Gates model catchments joined together, with an upper catchment and lower catchment. 

Virtually all of the maximum losing (i.e. ‘disconnected’) reaches are coincident with areas that have been subject to 

groundwater modelling (i.e. areas of the highest and most concentrated development), suggesting that disconnected 

river conditions in the MDB may be largely a phenomenon occurring after groundwater development. 

Comparison of the results with similar mapping conducted several years ago (SKM, 2003) suggests losing river 

conditions may be increasing (although this could be an artefact of the more detailed assessment undertaken here and/ 
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or the much drier conditions at the time of this analysis). Nevertheless, it is likely that river losses may become greater 

and river gains become further reduced into the future (in particular on the broad alluvial plains) as groundwater systems 

begin to fully reflect changing climatic conditions, time lags from groundwater development are realised, and 

groundwater extraction increases in some areas. Identifying the impacts of groundwater development on rivers and the 

processes behind river–aquifer interaction will therefore become even more important if water management is to move 

towards a truly integrated approach. 
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1 Introduction 

An important focus of the Murray-Darling Basin Sustainable Yields Project is proper accounting of surface–groundwater 

interactions. This document provides an overview of surface–groundwater connectivity mapping conducted for this 

project. Historically, these two resources have largely been managed as separate systems, despite the physical reality of 

their interconnection. The implication of this management has been ‘double accounting’ whereby the same parcel of 

water may be allocated to both surface water users and to groundwater users. The extent of ‘double accounting’ 

throughout the MDB is not well known, and similarly the nature of interactions between groundwater and surface water 

are poorly understood.  

A first step in understanding fundamental processes is knowledge of basic interactions between rivers and groundwater. 

The relationship at its most basic reduces to the question: is the river losing or gaining groundwater and at what rate? It 

is this basic interaction which the connectivity assessment aimed to identify and map. In practice such interactions are 

dynamic, fluctuating both seasonally and over the long term in response to climatic changes and the delayed impact of 

groundwater extractions. Hence the connectivity maps presented in this report only represent a ‘snapshot in time’ of the 

current state of interactions. It is therefore important to note when using these maps that the impact of a significant 

portion of groundwater development is not yet reflected in the results (i.e. into the future we can expect gaining streams 

to be gaining at a lower rate and losing streams to be losing at a higher rate as delayed impacts are realised, assuming 

current climatic conditions continue).  

In addition to these connectivity maps, numerical groundwater modelling has also been undertaken as part of this project 

for high priority areas (defined as areas with either high groundwater usage or high potential to impact on streams). The 

numerical modelling has identified the dynamic nature and extent of surface–groundwater interactions for these areas, 

and has enabled prediction of changes in this interaction into the future. The numerical groundwater modelling was in 

turn fed into surface water models in order to account for interaction between the two systems. The results of the 

modelling are recorded in individual reports for the high priority areas. A summary of the methods adopted, lessons 

learnt and recommendations arising from the numerical groundwater modelling, particularly relating to the surface–

groundwater interaction aspects of the modelling, is provided in Rassam (2008).  

While only representing a ‘snapshot in time’ of surface–groundwater interaction, the connectivity maps nevertheless 

serve multiple purposes:  

• They provide an alternate approach (to the numerical models) to assessing surface–groundwater interactions 

across the MDB. The alternate methodology has some advantages over the numerical modelling, as discussed 

in this report. 

• They serve as a check of the surface water modelling and groundwater modelling components of the project.  

• They provide an initial (and sometimes rapid) assessment that can be used as the basis for more detailed 

conceptualisation as part of modelling.  

• They estimate interactions outside of the modelled areas. 

• They are a powerful visual aid, with significant communication and education value. A map is an ideal tool for 

initiating discussions and catalysing questions regarding surface–groundwater interactions. While the maps may 

be shown to be inaccurate compared to current or future work undertaken at a finer scale, they nevertheless 

serve a very useful purpose as a starting point for conceptualising surface–groundwater interactions. 

Given the many uses of the maps, it is anticipated that these maps will be of interest and value to water resource 

managers and related professionals across the MDB, in that they provide a valuable starting point in understanding 

stream–aquifer interaction, and in turn how groundwater management may impact on the riverine environment and 

groundwater-dependent ecosystems. 

The connectivity mapping involved determining the direction and magnitude of groundwater flux to or from the major 

rivers within 13 of the 18 regions of the MDB for a given point in time (between March 2005 and June 2006). The regions 

where connectivity mapping was conducted were: Loddon-Avoca, Campaspe, Goulburn-Broken, Ovens, Murray, 

Murrumbidgee, Lachlan, Macquarie-Castlereagh, Namoi, Gwydir, Border Rivers, Condamine-Balonne and Barwon-

Darling. For each of these catchments a stand-alone connectivity report has been prepared. These individual reports 

describe in detail the connectivity mapping results for each catchment. They also contain a stand-alone map for each 

catchment, which is also reproduced in this report. The assessment and analysis in the individual connectivity reports 
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were specifically focused on the results within each catchment. The purpose of this overview report is to describe the ‘big 

picture’ findings arising from the connectivity mapping. The aim of each section of the report is described below: 

• Method overview – This section summarises the methodology adopted in the connectivity mapping. 

• Lessons learnt – The objective of this section is to describe key areas where lessons were learnt within the 

connectivity mapping process, and to discuss how the task could be undertaken better or more efficiently in the 

future. 

• Overview of accuracy of maps – The aim of this section is to provide an indication of the reliability of the maps. 

The question considered is ‘How accurate do we believe the maps are?’ 

• MDB-wide interpretation – This section provides an overview of trends and observations across all the 

connectivity maps. A MDB-wide connectivity map is presented. This map links results from all 13 catchments 

where connectivity mapping was undertaken. 
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2 Method overview 

This section describes the method used to assess the connectivity. The method is divided into two main tasks: firstly, 

assess the direction of groundwater flux (referred to here as ‘connectivity mapping’) and secondly, quantify the 

magnitude of this flux. For each of these tasks, the major steps involved in the process are described. 

2.1 Connectivity mapping 

1. River reach selection 

The issues that were considered in selecting the rivers or river reaches to include in the connectivity assessment 

were: 

• ‘Main’ river/s – there was typically one, and often two or three rivers, that were clearly the main rivers within the 

catchment and hence required assessment. 

• Groundwater modelled areas – rivers included in a groundwater modelled area were included in the 

assessment. 

• Other ‘representative’ river reaches – these were included where there was a need to map a river or part of a 

river in order to demonstrate conceptual understanding in that part of the catchment, e.g. picking one reach in 

highland areas to show understanding of processes in upland areas. 

• Catchment-specific issues – rivers or reaches might be assessed due to catchment-specific issues which 

increase interest in that area. 

• Surface water modelled areas – rivers included in surface water modelling were generally included in the 

assessment, i.e. reaches covered by IQQM / REALM models.  

• Definition of rivers – in addition to perennial rivers, major ephemeral rivers within each catchment were also 

included. A precise definition of what constituted an ephemeral river was not applied in the selection process. 

Generally, however, a ‘major’ ephemeral river was considered to be one which flowed for more than just a few 

weeks of the year (i.e. at least a couple of months), and secondly one that contributed a reasonable percentage 

of total annual flow in the catchment.  

2. Identify groundwater model stream gauge sites  

Data was collated from the groundwater model stream gauges and any other intermediate gauges or gauges 

representing reaches included in the connectivity assessment, but not in the groundwater model. 

3. Date selection  

A date was selected for the mapping and flux assessment. A date as close to current as possible was selected (e.g. 

2005/06) as the aim of the task was to assess existing developed conditions (ignoring time lags). However the 

selected date was sometimes constrained by the availability of surface water or groundwater elevation data. The 

date was also selected so as to exclude any unrepresentative peaks or troughs in the data (i.e. dates with relatively 

stable river and groundwater levels were chosen). High flow events in the rivers were avoided, as low river flows are 

more common. It is important to note that ‘date’ actually refers to a span of several months (e.g. February to April 

2005) because groundwater levels are not available for all bores within a catchment on a single date. Rather than 

infilling data to obtain a level for a given date, a value was obtained by selecting the closest date to the target date 

(one month either side of the target month). (In two catchments, Ovens and Border Rivers, up to four months either 

side of the selected date was allowed but this only applied to a relatively small percentage of bores within those 

catchments.) The date selected for the assessment of each catchment is shown in Table 2-1. 
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Table 2-1. Assessment dates for connectivity mapping  

Region Date of assessment 

Loddon-Avoca January 2006 

Campaspe March 2005 

Goulburn-Broken February 2006 

Ovens March 2005 

Murray March 2005 

Murrumbidgee March 2005 

Lachlan March 2005 

Macquarie-Castlereagh January 2006 

Namoi June 2006 

Gwydir June 2006 

Border Rivers June 2006 

Condamine-Balonne March 2006 

Barwon-Darling June 2006 

 

4. Collate bore data  

Data was collated for all shallow bores (i.e. watertable bores) with readily available water level data for the selected 

date. Observation bore data targeted only bores screened in the watertable aquifer. Generally a cut-off depth for 

different areas of the catchment was selected for the watertable aquifer, in order to identify bores screened in the 

watertable aquifer. (In the absence of screen location, the base of the bore was used as a de facto indicator of 

screen location.) The watertable aquifer depth was determined based on hydrogeological maps or reports, model 

interpretation of the watertable aquifer (where available), and assessment of bore logs (where required). 

5. Collate surface water data  

Surface water elevation data was collated at the surface water model nodes and other available points along the 

river (e.g. other gauges, weirs or dams) for the selected date. Interpolating between river elevations to better model 

the shape of the river along the catchment was undertaken by fitting a curve (generally a second or third order 

polynomial) to the data. In order to improve the accuracy of this curve fitting for gauges located a large distance 

apart, DEM data was used to help define the shape of the river and assist in the curve-fitting process.  

6. Develop watertable elevation surface  

The watertable elevation surface was developed by combining the river elevation data and the surface water data 

(including interpolated points). An automated contouring package was used to generate this surface. (The program 

used was ANUDEM 4.6 (1997). ANUDEM calculates values on a regular grid of a discretised smooth surface fitted 

to large numbers of irregularly spaced elevation data points, contour lines and stream lines. The program imposes a 

global drainage condition which automatically removes spurious sinks where possible.) The first draft of the 

elevation map was reviewed to examine the potential presence of any errors in the data, as demonstrated by 

irregularities in the surface (e.g. bores screened in the wrong aquifer or with suspect groundwater level data, 

typically appearing as ‘islands’ in the potentiometric surface). The bores with irregular data points were removed and 

the surfaces regenerated. This review process was repeated and further points removed if required. 

7. Flux category assessment  

Based on the watertable elevation, the relationship between the river and groundwater was determined. This 

assessment was made on the basis of the shape of the water level surface along the river (i.e. contours pointing 

down the river indicating losing conditions, contours pointing up the river indicating gaining conditions, and contours 

approximately normal to the river indicating hydraulically neutral conditions). These three categories are all 

conditions where there are continuous saturated conditions between the river and groundwater. A fourth category is 

a losing river but with unsaturated conditions between the river and groundwater. In this case the loss rate of river 

water to the groundwater is at a maximum, as the conditions represent the maximum driving head for seepage. 

Maximum losing conditions were assessed based on depth to watertable near the river, river width, and the ratio of 

aquifer hydraulic conductivity to river bed sediment hydraulic conductivity. All of these variables control the point at 

which a river changes from saturated losing to unsaturated losing conditions (or ‘disconnected’). Further details on 

this relationship are explained in Rassam (2008). Depth to watertable was obtained from the watertable elevation 
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map; river width was estimated from readily available satellite imagery; and aquifer hydraulic conductivity was 

obtained from hydrogeological maps, reports and (where appropriate) values adopted in the groundwater models. 

River bed hydraulic conductivity was assumed to be proportional to aquifer hydraulic conductivity (10% or 1% of 

aquifer hydraulic conductivity). 

In summary, the four categories used in the connectivity assessment are: 

• A – gaining 

• B – losing 

• C – hydraulically neutral  

• D – losing, unsaturated. (This condition represents the maximum loss rate for the given reach, described as 

‘maximum losing’ or ‘disconnected’.) 

Some important notes regarding these classifications are described below: 

• Hydraulically neutral conditions are defined when the hydraulic gradient between the stream and the 

groundwater system is very low and within the errors of the analysis. In a strictly technical sense it is not 

possible to have a pure category C (hydraulically neutral condition), because in practice groundwater levels will 

seasonally (and intra-seasonally) fluctuate, meaning that flux condition will change from losing to gaining across 

the year. River levels will also go up and down, further adding to variability about this approximately neutral 

condition. Hence, a system which is approximately hydraulically neutral at a point in time is most likely actually 

one that is seasonally variable.  

• Determining the difference between a stream that is losing and losing unsaturated may not be straightforward 

with available data. The most important limiting factor will be determining with some level of accuracy the 

hydraulic properties of the river bed material. Some rivers within the MDB will have information on river bed 

materials, etc. However in many cases it may be difficult to obtain this information, and it certainly will be very 

inconsistent across the mapped areas. (A detailed investigation of this was beyond the scope of the project.) 

Further, whether flow from the river is unsaturated depends firstly on the depth to watertable below a losing 

stream. When assessing this factor, a bore set too far away from the stream could over estimate the depth to 

watertable near the stream and lead to a conclusion of unsaturated conditions. Bores close to the stream are 

therefore preferred. 

• A fifth category which could be added to the four above is ‘losing, variably saturated’ (i.e. seasonally changes 

between category B and D in response to either natural groundwater fluctuations or enhanced groundwater 

fluctuations resulting from river seepage). It was considered unrealistic at this level of assessment to expect to 

be able to differentiate between category D and ‘losing, variably saturated’, so this latter category was not used. 

• A final category that could have been added to the list is ‘through-flow rivers’, which are rivers where 

groundwater flows into one side of the river and out of the other side. These are relatively uncommon in the 

project area and hence no special category has been created for this type of river. They have been classified as 

either ‘gaining’ or ‘losing’ according to their net flux into or out of the river. 

• An additional temporal consideration is river reaches which display long-term changes between categories. This 

is not possible to report in a classification system which captures a point in time, but if such changes were 

observed from assessment of key hydrographs then a discussion of this was included in the report. 

• Where data was not available for the classification, it was based on classical geomorphological/hydrogeological 

interpretation, coupled with personal judgement in consultation with local experts. 

• If the dominant flow process to or from the river were horizontal, an average near-river aquifer hydraulic 

conductivity was assigned. If the dominant flow processes were vertical, the reach was attributed a conductance 

based on the layer-thickness weighting (across the full thickness of any semi-confining layer). If no semi-

confining layer existed, then the vertical hydraulic conductivity of the aquifer was utilised.  

2.2 Quantification of flux 

This task involved estimating the magnitude of water flux between groundwater and surface water for the selected 

assessment date. The calculation of the direction and magnitude of the flux (ML/day/km) was semi-automated via an 

Excel spreadsheet using a Darcian approach.  
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Application of equation where horizontal flow processes are dominant 

For river reaches where horizontal flow processes were deemed to be the dominant exchange mechanism with the river 

(i.e. gaining streams or saturated losing streams), a Darcy calculation was undertaken based on the horizontal gradient 

to/from the river. Consideration of the relevant distance at which to estimate a groundwater gradient to/from the river was 

important. Selection of a relatively large distance over which the gradient was calculated (e.g. 1 to 2 km) provided a 

longer term temporal averaging effect on the results, and was deemed more appropriate than a gradient based on data 

close to the river which would reflect short-term groundwater–river dynamics. The relevant bulk average hydraulic 

conductivity of the aquifer over the relevant distance and the applicable depth of aquifer contributing to exchange was 

considered and documented. 

Application of equation where vertical flow processes are dominant (unsaturated losing conditions) 

For river reaches where vertical flow processes were dominant (i.e. unsaturated losing streams), a Darcian approach 

assuming a linear relationship between river–groundwater head and flow rate would not have been valid (i.e. where the 

watertable is deep and the river bed sediments have a lower hydraulic conductivity than the aquifer). In this instance the 

stream loss rate will be at its maximum (i.e. ‘disconnected’), for the given river height. In these cases then either a 

conductance term reflecting the thickness-weighted vertical hydraulic conductivity or more simply the aquifer vertical 

hydraulic conductivity was used in the Darcy equation. The technically correct gradient to use is the head difference 

between the river level and the pressure head in the river bed material, (determined from a mini-piezometer installed in 

the stream bed), divided by the distance between the top of the river bed and the top of the mini-piezometer screen  In 

reality this gradient was not known (installation of mini-piezometers in the river bed layer are very rare), and therefore the 

gradient was estimated. The maximum gradient is the head of water in the channel divided by the river bed layer 

thickness; however this is considered likely to be an overestimate. In the absence of other information, a gradient of 1 

was adopted. As described above, the relevant hydraulic conductivity in the equation was a thickness-weighted 

conductance term, or in the absence of this (as was the case for the majority of reaches and catchments) the vertical 

hydraulic conductivity of the aquifer was adopted as a de facto hydraulic conductivity of the river bed layer. In turn, the 

vertical hydraulic conductivity of the aquifer was assumed to either 10% or 1% of horizontal hydraulic conductivity. 

Determination of unsaturated losing conditions 

The saturated or unsaturated (‘disconnected’) condition of a losing river reach was determined based on an assumed 

ratio of the hydraulic conductivity of the river bed sediments (i.e. clogging layer) and aquifer, (K1/K2). The relationship 

between these variables was based on modelling work of Rassam (2008), which investigates the point at which losses 

from rivers become unsaturated. This relationship is shown in Figure 2-1. The assumed K1/K2 ratio for this assessment 

was 0.1. As shown in Figure 2-1, at this K1/K2 ratio the theoretical depth to watertable which initiates unsaturated 

conditions is 1 × river width (W). A depth to watertable greater than 1W indicates that the river is disconnected, and if 

less than 1W the river was assumed to be connected. The assumption in this method is that K1/K2 is a constant, when in 

reality it will vary substantially within and between rivers. (Note that when K1 is equal or approximately equal to K2, there 

will never be ‘disconnection’, and hence W is irrelevant.) 
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Figure 2-1. Theoretical relationship between clogging layer hydraulic conductivity and stream width / depth to watertable (after Rassam, 

2008) 

 

Selection of appropriate aquifer thickness 

In most instances it was appropriate to use the entire thickness of the upper aquifer in the Darcy calculation. For a river 

which is gaining (or losing) from each side, it is reasonable to assume that the whole aquifer is contributing to discharge 

to (or from) the river. Although the discharge/recharge was considered in two dimensions, in reality it is a three-

dimensional problem – as flow approaches the river, vertical gradients become important and discharge converges at the 

river. Only when potentiometric levels indicate that there is a component of flow which goes across the river is it 

inappropriate to use the full aquifer thickness. In these instances a nominal thickness of perhaps 10 m could be adopted. 

Another possible exception to the use of full aquifer thickness is where the upper aquifer contains clayey layers which 

may in part divide the aquifer. In such cases a smaller number than the full thickness may be appropriate. 

Impact of clogging layer 

It is important to note that in this assessment, for saturated conditions (i.e. ‘connected’ rivers) the clogging layer was not 

explicitly allowed for in the flux calculations. However, it was allowed for implicitly in that the effect of a clogging layer 

would have been reflected in the gradient to or from a river, e.g. a gaining stream which has a significant clogging layer 

present will have a reduced gradient to the river compared to the same stream if the clogging layer was absent. It is also 

worth noting that this method provides an average flux value for the reach. There will be significant local variations (e.g. 

due to variations in the clogging layer), but from a regional perspective the flux calculations are considered 

representative.  

Evapotranspiration 

The flux calculations do not allow for the impact of evapotranspiration close to the river (i.e. the flux numbers calculated 

in this assessment include evapotranspiration) and hence the losses and gains reported should be considered a 

maximum. Evapotranspiration that occurs over the distance at which the groundwater gradient is calculated from the 

river (typically 1 to 2 km in this assessment) will be part of the calculated river–groundwater flux number. 

Evapotranspiration that occurs across a narrow floodplain near the river is, however, unlikely to be captured in the 

gradient used in this assessment, and therefore in these situations, a river gain flux number will include an 

evapotranspiration component. 
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Uncertainty 

The flux calculations contain uncertainty. Uncertainty is introduced at a number of levels including: 

• estimates of aquifer parameters – in particular hydraulic conductivity, which can spatially vary markedly 

• errors related to data density – for example, only a limited number of bores make up the potentiometric surface 

and hence the surface contains inaccuracies related to extrapolation/interpolation of the surface, or estimates of 

river stage may not be accurate due to the absence of gauges 

• errors associated with assumptions in the method – for example, evapotranspiration close to the river is 

assumed to be negligible; the method of determining saturated or unsaturated flow condition; and associated 

assumptions regarding the clogging layer etc.  

In some cases, uncertainties can be quantitatively determined. In this assessment, however, uncertainties were 

discussed qualitatively and then based on understanding of the various uncertainties, different rivers or reaches were 

assigned one of three uncertainty categories: 

• A – high confidence 

• B – moderate confidence 

• C – low confidence. 

Spatial variability 

It is well documented that at the local scale, flux rates into or out of rivers can vary markedly within short distances due to 

a high level of heterogeneity in near-river sediments. The calculations undertaken in this assessment did not attempt to 

account for such local-scale processes. The flux values calculated represent average values for the mapped reaches. 

The results of the flux calculations were tabulated for defined river reaches. Flux calculations were then compared with 

groundwater modelling results.  
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3 Lessons learnt 

This section describes how the accuracy of the connectivity mapping could potentially be improved, given additional time 

and budget or simply by taking a different approach, based on the benefit of experience gained during the exercise. 

Method of determining river elevation 

The direction and magnitude of flux to/from the river is quite sensitive to the assumed river elevation. Whereas the 

groundwater surface is generally defined by a large number of points (i.e. levels provided by many observation bores), 

the river elevation for the catchment is typically defined by only a handful of points (river gauges). The flux assessment is 

therefore sensitive to the method of interpolating between these points, and particularly to where gauges are spaced at 

large intervals (as was often the case within this project). For example, Figure 3-1 shows the impact of a linear 

interpolation between gauges compared to a curve that accounts for the changing gradient of a river bed along the 

catchment. This figure shows that the linear interpolation could be up to 7 to 8 m different to a polynomial fit between the 

gauges. (Multiple solutions also exist for polynomial fits and hence this method could also contain inaccuracies – 

however it is generally considered that the polynomial fit is more likely to accurately mimic actual river elevations.) In this 

project DEMs were also used to assist with the polynomial fit that matched the river bed profile. The DEM itself does not 

give the river water level, but provides an average level of land within a 250 m, a 25 m or a 100 m grid over the river, 

depending on the DEM used. The DEM therefore does not provide the river elevation, but the general trend of the river 

bed gradient along the catchment. 

 

 

Figure 3-1. Example of impact of different methods of interpolating between river elevations 

 

The connectivity mapping could be made more accurate by improving the estimate of river elevation. It is proposed that 

by using a higher resolution DEM and the full capacity of that DEM (i.e. the finest resolution of the data), the river 

elevation could be determined more accurately. Consideration also has to be given, however, to the impact of trees near 

the river. In this project for example, it was found that despite the lower resolution, the 9 second DEM was actually more 

suited to this purpose than the SRM DEM, as the 9 second DEM was derived from on-ground data and hence the 

readings were not impacted by trees near the river. 
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Groundwater bore selection 

• Date of selection 

Selection of groundwater observation bores included in the connectivity mapping was limited to bores with 

available groundwater levels either within the selected month, or one month either side of that month. In 

hindsight, allowing greater flexibility around the selected month, to allow inclusion of more bores in the analysis, 

would have been a better approach. This is because on the whole the temporal difference in groundwater levels 

(even the maximum seasonal difference for a given bore) is typically fairly small, and generally less than the 

error introduced by having no data present at all. Inclusion of groundwater levels up to 3 to 4 months either side 

of the date (or even up to 2 to 3 years of the date) would have allowed inclusion of a larger number of 

observation bores. Ideally, this method of bore selection would be a sophisticated method such that in areas 

with high bore density, bores outside of the ideal date range (say within 1 to 2 months of the selected date) 

would not be used, but in areas of low bore density, bores with data further from the selected date would be 

used in the mapping. 

• Use of other bore data to improve spatial coverage  

Significant parts of the map were largely devoid of observation bore data. In such areas, watertable contours 

were based on interpolation between very widely spaced observation bores. In order to improve the estimate of 

the watertable surface in these areas, it is recommended that bores other than those readily available from the 

state agency databases be used. This could include attempting to source information from other, ‘less official’ 

state groundwater databases (e.g. DPI in Victoria), the entirety of whose data may not be included on the main 

state groundwater database. But more importantly this should involve inclusion of appropriate private bore data 

(i.e. stock and domestic bores or irrigation bores) containing groundwater level information. (It is likely that 

screen depths will need to be estimated from bore depth, and greater care would need to be exercised in bore 

selection to avoid use of irrigation bore level data influenced by seasonal pumping.) While this data is clearly 

unlikely to be as accurate as observation bore data, it is considered that use of such data in very data poor 

areas would be much better. 

Better method of determining 'disconnection'  

One of the key areas for improvement in the mapping is development of a better method for determining areas of river 

that are under maximum losing conditions (i.e. river and groundwater are separated from each other by an unsaturated 

zone). In the method described in this report, a reach was determined to be disconnected based on an assumed ratio of 

the hydraulic conductivity of the river bed sediments (i.e. clogging layer) and aquifer (K1/K2). The assumed K1/K2 ratio 

for this assessment was 0.1. Based on the relationship shown in Figure 5-1, at this K1/K2 ratio the theoretical depth to 

watertable which initiates unsaturated conditions is 1 × river width (W). The obvious problem with this assumption is that 

K1/K2 varies substantially. In many stretches along rivers across the MDB it is likely that silt deposition means that K1/K2 

could be substantially less than 0.1, meaning that unsaturated conditions will form at shallower depths than 1W. It is 

therefore likely that the areas of ‘disconnected’ river have probably been under estimated using this method. However, 

there are also likely to be some stretches of river where K1/K2 is greater than 0.1, which could have led to a 

‘disconnected’ classification, when in fact they were connected. 

A better method for more accurately estimating the K1/K2 ratio for major rivers in the MDB would improve the accuracy 

of the connectivity mapping. Essentially this means development of a regional method of estimating river bed sediment 

conductivity, as aquifer hydraulic conductivity is relatively well known. For example, river slope might be a reasonable 

explanatory variable for the river bed sediment hydraulic conductivity, on the basis that slope relates to river velocity 

which relates to the degree of sediment deposition (or perhaps better than slope, slope and cross-sectional area, or 

slope and soil type). Clearly some reasonable basin-wide data on river bed properties would be required in order to 

develop and calibrate such a relationship. As a minimum this would need to describe river bed material and thickness, 

but ideally would include some conductivity measurements in the river bed sediments. It is probably unlikely that 

sufficient data exists across the MDB in order to development a MDB-wide relationship between these variables. 

Possibly a theoretical relationship could be established on the basis of geomorphological principles. If such a relationship 

could be established then a K1/K2 ratio could be assigned to each river length using a GIS function.  

Remote sensing should also then be applied in order to determine river width as close as possible to the assessment 

date (or for similar level of flow if a suitable close date cannot be obtained). The method of estimating stream width in this 

assessment was relatively crude and generally determined via a visual interpretation of the Google Earth satellite 
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imagery and not as accurate as ideal. The relationship presented in Figure 2-1 for determining ‘connectivity’ is quite 

sensitive to the assumed river width. 

Improving aquifer hydraulic conductivity value estimates 

The magnitude of flux for connected reaches is quite sensitive to input aquifer hydraulic conductivity (K) values. Greater 

accuracy in the flux calculations could be obtained by spending more time in differentiating K values within the watertable 

aquifer. This would be achieved by undertaking more background research (i.e. literature reviews), to provide better 

accounting of spatial variation for this important parameter.  

Reduced influence of river elevation 

The connectivity mapping river input data used a river elevation point at 250 m intervals along the river. This means that 

for a catchment where the main river reach was, for example, 300 km long, there would be 1200 river elevation points 

used in the contouring. By contrast there would be many less observation bores for the catchment (typically only 5% to 

20% of that number of points). Therefore the automated contouring package would be unduly influenced by the river 

elevation rather than bore elevations, due to the sheer number of data points used. This is not necessarily a desirable 

result, as there is probably greater confidence that a bore elevation is correct rather than a river elevation at a given point, 

given that the river elevation is based on interpolated data, but the groundwater elevation is a physically measured value 

at that point. There are generally only in the order of 5 to15 gauges in a catchment, but many more observation bores. 

The use of river chainage and interpolated values at 250m intervals appears to give too  much weight to the river 

elevation data, and therefore a reduction in the density of river elevation points may be desirable. 

Re-iteration of potentiometry construction for disconnected reaches  

Where river reaches were found to be disconnected from the watertable, ideally the watertable surface would have been 

re-contoured removing the input of river elevation for the disconnected reach. The initial assumption in the connectivity 

mapping was that all rivers were in direct hydraulic connection with the watertable (i.e. assumed saturated flow between 

river and groundwater), and therefore all river elevations were an input into the watertable surface. Where it was 

demonstrated that this was very unlikely and unsaturated flow conditions were most likely present, it would be more 

accurate to exclude the river as outcropping groundwater, and re-iterate the watertable surface with that section of river 

removed as an input. 

Build in relationship between topography and watertable elevation 

The initial assumption that all rivers were in direct hydraulic connection with the watertable means that in catchments 

with sparse observation bores, contour lines were drawn directly between rivers, disregarding physical processes 

controlling watertable elevation (e.g. the surface water divide between two rivers will create a groundwater divide / 

mound), but this is not reflected in the watertable surface developed by the automated contouring. A method of 

contouring that allows for topographic control of watertable elevation would improve the watertable surface and hence 

the accuracy of groundwater gradients and flux calculations.  

Differentiation of the watertable aquifer 

Differentiation of the watertable aquifer could be refined, in order to ensure that bores screened in deeper aquifers are 

not included in the assessment and also to ensure that bores are not unnecessarily culled from the dataset, due to over-

conservative cut-off depths. Groundwater bore cut-off depths were generally derived from hydrogeological maps and 

other available published work from the project area. Given more time and resources, an intensive audit of local/regional 

databases could be undertaken to verify which aquifer each of the bores was screened in, via lithological log data.  

Date selection for the maps 

This point does not refer to the accuracy of any given map. It is essentially an overview question: would the mapping 

have been more useful at a regional level if one date was selected for all maps, instead of the multiple dates (and 

seasons) ranging between 2005 and 2006? It was a deliberate decision to not use one date for all the maps, as it was 

© CSIRO 2008 Surface–groundwater connectivity assessment ▪ 11



 

considered more valuable for the maps to represent one condition, rather than one date. The condition sought was that 

of relatively low flow in the rivers, typical of conditions in the last few years, and one of relatively stable groundwater 

conditions (i.e. not in the middle of a heavy groundwater pumping season). If one date had been selected across the 

MDB, specific differences in some catchments (e.g. timing of regulated flows or anomalously high rainfall in a particular 

catchment) would mean that the regional map would not reflect the surface–groundwater flux condition prevailing for 

most of the time within the catchment. Hence a non-uniform date was preferred in order to attempt to capture the most 

common present condition. 

High flow condition 

The connectivity maps were deliberately selected for low flow river condition. Compared to rivers at higher flow, the 

fluxes in the current mapping will tend to over estimate rivers gains and under estimate river losses. It would be 

worthwhile to undertake the mapping for a time of year when the rivers are at relatively high flow (not peak flow, but 

perhaps 90th percentile flow), in order to gain an appreciation of change in flux direction and magnitude at higher flows. 

While all of the above changes would lead to more accurate connectivity maps, those that could be relatively readily be 

implemented include: maximising the number of bores available through expanding the date and use of non-observation 

bores; finer definition of watertable aquifer hydraulic conductivity; and re-iterating the potentiometric surface to exclude 

disconnected reaches. Improving the method of determining river elevation, using a contouring method that allows for 

topographic influence on watertable elevation and developing a better method for determining unsaturated 

(‘disconnected’) conditions are all very worthwhile steps, but these will require further research before they could be 

applied to this process. 
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4 Overview of accuracy of maps 

Assessing the accuracy of the connectivity maps is not necessarily straightforward, as this requires a benchmark of 

known high accuracy. Hence this discussion of the accuracy of the maps is focussed around two areas: (i) key areas of 

the known, or most likely, significant errors in the connectivity mapping based on an understanding of accuracy of input 

parameters and their sensitivity (essentially a discussion of confidence in the connectivity maps); and (ii) via comparison 

with the numerical model results.  

4.1 Likely inaccuracies 

Key areas where inaccuracies may have been introduced to the connectivity mapping have been discussed in part in the 

preceding section (Section 3, Lessons learnt) and therefore only a brief discussion is provided in this section, focussing 

on the areas most likely contributing significant errors to the mapping. These are discussed in terms of the impact on the 

flux category (i.e. flux direction) and the flux magnitude. (Obviously, inaccuracies in flux direction will also result in 

inaccuracies in flux magnitude.) 

4.1.1 Flux direction 

Bore density – The connectivity mapping is heavily reliant on reasonable bore coverage. In areas with no observation 

bores or low bore density, there is generally low confidence in the connectivity mapping results.  

River elevation – The accuracy of the flux direction in the connectivity mapping is very reliant on an accurate river 

elevation, particularly where the watertable is relatively shallow. Under these conditions, a change in river elevation can 

alter the direction of exchange with groundwater. In many of the lower catchment areas throughout the MDB there are 

long distances between stream gauges. Due to limitations of the method of interpolating between stream gauges for long 

distances between stream gauges, and where the watertable is shallow, there is only low to moderate confidence that 

the flux direction is accurate. 

4.1.2 Flux magnitude 

Aquifer hydraulic conductivity – The magnitude of flux estimated for connected rivers is very sensitive to the chosen 

value of aquifer hydraulic conductivity. It is conceivable that at a local scale, variations in hydraulic conductivity could be 

up to two orders of magnitude different to that estimated in this assessment. At a regional scale, it is possible that in 

some areas of the mapping, the adopted hydraulic conductivity could be two or three times different to that estimated in 

this assessment, and therefore correspondingly it is possible that the estimated flux magnitude could be in error by up to 

three times that estimated.  

River bed hydraulic conductivity – The hydraulic conductivity (K) of the river bed sediments is a very poorly defined input 

parameter. This assessment has assumed that the river bed K is a certain percentage of the aquifer K, which is a source 

of error in the calculations. It introduces error to the maximum losing calculations, where river bed K is used as the 

relevant hydraulic conductivity, and it introduces spatial errors to the assessment of where a river becomes disconnected 

from groundwater. Whereas for lateral aquifer K (described above) the adopted hydraulic conductivity is considered to be 

two or three times different to that estimated in this assessment, for river bed K the hydraulic conductivity could be up to 

one order of magnitude larger, or one to two orders of magnitude lower than that estimated in this assessment. The 

implications for the certainty of these results are that there is generally low confidence in the flux magnitude for 

disconnected reaches, and only low to moderate confidence that there are not additional areas of disconnected reaches 

beyond that identified in this report. 

Near-river evapotranspiration – The groundwater gradients used to calculate flux exchange with the river include near-

river evapotranspiration effects, leading to overestimation of river exchange. The impact of this is difficult to estimate 

(and varies with the specific conditions for each part of each river), but is expected to be a smaller source of error than 

that introduced by aquifer and river bed hydraulic conductivity.  
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4.2 Comparison with numerical model 

One issue with using the numerical model for assessing the accuracy of the connectivity mapping is that it cannot be 

assumed that the modelling results are necessarily more accurate than the connectivity mapping. Each approach uses a 

different method to determine the direction and magnitude of groundwater flux. The key areas of difference between the 

numerical model and the connectivity mapping are listed and discussed below. The first two items relate to differences in 

the nature of the output of the two methods, whereas items three to seven are differences in the methods themselves: 

1. Spatial difference  

The modelling results for river flux were generally aggregated over longer stretches of river than the connectivity 

mapping. This can make direct comparisons of reaches between the two methods difficult. For example, for a 

stretch of river from 0 to 100 km, the numerical model may indicate a flux from the river to groundwater of 0.5 

ML/day/km, whereas the connectivity mapping may indicate a flux of 1.5 ML/day/km (for 0 to 50 km) and -0.5 

ML/day/km (for 50 to 100 km). The overall flux may be the same for the reach (50 ML/day/km) but the accuracy 

of the spatial differences indicated by the connectivity mapping cannot be assessed against the numerical 

model. (This can be overcome by obtaining a more detailed spatial breakdown of the numerical modelling 

results, but at significant post-processing effort which was not undertaken for the comparison.) 

2. Temporal difference 

In most cases the difference in dates of the model comparison and the connectivity assessment was only 1 to 2 

years (e.g. comparing 2004 or 2005 model results to the 2005 or 2006 connectivity results). However, for 

example, for the Namoi region the calibration period was 1985 to 1997 and therefore the time difference 

compared to the connectivity mapping is significant. For the Upper Condamine model the calibration period 

used was 1980 to 2001. (For the calibration period where a date within several years of 2005/06 could not be 

obtained, an average across the calibration period was used for comparison with the connectivity fluxes.) For 

the Macquarie-Castlereagh region the calibration period extended to 2003, and hence this year was used for 

comparison purposes. It is not expected that the typical time difference between the model and connectivity 

mapping assessment dates of 1 to 2 years would make a large difference in the results, relative to other 

potential sources of error in both methods. (This comment assumes, however, that the river height is 

approximately the same  – the river elevation rather than groundwater elevation has greater potential to affect 

the comparison, i.e. if the river height was substantially different for the modelled year compared to the mapped 

year, then the results could change significantly.) For much of the MDB, the 1- to 2-year lag would mean lower 

gaining/greater losing conditions for the connectivity mapping compared to the modelling, due to falling 

groundwater levels across most of the MDB. However for the model calibration periods with a number of years 

between the end of the calibration period and 2005/06 (such as the example catchments cited above), there is 

significantly more uncertainty regarding the value of the comparison. 

3. Estimating river height  

The numerical modelling used a linear interpolation between river gauges, whereas the connectivity mapping 

attempted to allow for the actual slope of the river bed, by fitting a curve to multiple gauges along the river reach. 

Further, the digital elevation model was used to assist in the curve fitting process, to guide the fitting where 

gauges were a large distance apart. The linear interpolation can introduce significant errors in river elevation, 

with the greatest potential error at the mid-point between gauges. Previously in this report (refer Section 3 and 

Figure 2) it was demonstrated that the two methods could arrive at a difference in river elevation of as much as 

8 m at the mid-point of two gauges some 100 km apart. This is a significant amount in reaches where the 

watertable is relatively shallow, and could, for example, result in a given reach being classified as losing for the 

modelling but gaining in the connectivity mapping. 

4. Difference in number of observation bores  

The watertable surfaces generated by the numerical models were generally comprised of significantly fewer 

observation bores (calibration points) than the connectivity mapping, which used all (readily) available 

observation bores of an appropriate screen interval. This can result in a more accurate watertable surface than 

that generated by the numerical model, in those areas where observation bore density was relatively high in the 

connectivity mapping.  
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5. Calibration effects  

The numerical model relies on calibration in order to optimise accuracy of the watertable surface. Where the 

model cannot be accurately calibrated, errors are introduced to the modelled watertable surface. These could 

either be errors in matching the amplitude of the observation bore fluctuation or the timing of the fluctuation. In 

contrast, the connectivity mapping does not rely on calibration for development of the watertable surface. 

6. Simulating physical processes  

The watertable surface developed by the numerical modelling is one that is generated through simulation of 

physical processes (i.e. recharge, discharge, groundwater inflow or outflow, groundwater extraction). Because 

the numerical model attempts to simulate these physical processes, it is anticipated that the models, in areas 

with no or very low observation bore density, will develop a more representative watertable surface than the 

contoured surface used in the connectivity mapping. Further, a regional numerical model smoothes out the 

impact of potentially erroneous individual data points. While local perturbations may not be described as 

accurately as in the connectivity mapping, a numerical model is more likely to accurately simulate regional 

processes. The connectivity mapping is completely reliant on the available observation points measured, which 

could lead, for example, to use of observation bores screened in layers not representative of the watertable 

surface. The numerical model by contrast has the capacity to ‘iron’ out local data points which might be 

inaccurate, to produce a more regionally reliable surface. The numerical model also has the advantage of more 

accurately simulating the complex geometry of the river, both in a horizontal and vertical sense.  

7. Simulation of river losses  

The numerical model used in the groundwater modelling (MODFLOW) assumes unsaturated flow conditions 

begin to occur as soon as groundwater levels drop below the base of the streambed layer. (There is scope 

within MODFLOW for manually changing the elevation at which the transition to unsaturated conditions occurs; 

however this was not exercised during this project.) Once this occurs, the formula applied for calculating river 

losses is dependent on the head difference between the river stage and the base of the river. The physical 

reality is however that the driving head for river loss in this situation will be the difference between the river 

stage and watertable elevation, up to the point at which unsaturated conditions are reached. The point at which 

unsaturated conditions are reached is not necessarily immediately below the base of the river, but depends on 

the hydraulic conductivity of the river bed sediments and the depth to watertable. In the connectivity mapping an 

attempt was made to estimate the point at which unsaturated conditions occur and for these conditions a 

vertical hydraulic conductivity and assumed hydraulic gradient of 1 was applied to estimate seepage losses. 

This difference in simulating river losses may result in the numerical modelling tending to over estimate river 

losses compared to the connectivity mapping, particularly where the watertable is shallow. Under these 

conditions lateral seepage from the river and a much lower gradient may be the more appropriate conceptual 

model, depending on the conductivity of the river bed sediments. (A river subject to unsaturated flow conditions, 

also referred to as ‘disconnected’, is the situation where losses reach their maximum.) 

In summary, with the exception of point 6, the above items are causes for the connectivity mapping to be more 

representative of flux conditions for the given point in time than the numerical modelling. This does not mean that the flux 

mapping is more useful than the numerical modelling; indeed the value of the numerical modelling is that it provides flux 

conditions over long time periods for which it would be a cumbersome and inefficient process to use the connectivity 

mapping. The main conclusion is that the processes and assumptions behind the simulations of river–groundwater 

exchange are quite different between the two methods, such that the value of direct comparisons is limited. However, on 

balance the connectivity mapping probably provides the more accurate ‘snapshot’ assessment of river–groundwater 

exchange.  
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5 MDB-wide interpretation 

The MDB-wide connectivity map (constructed by joining the individual 13 maps) is presented in Figure 5-1. Regional 

maps are shown in Appendix A. This section describes major river–aquifer processes across the MDB, possible future 

trends, and implications and future work. 

 

 

Figure 5-1. Surface–groundwater connectivity map across the Murray-Darling Basin 

 

5.1 Trends and processes 

A useful point of comparison of trends and processes evident in the MDB-wide map is via comparison with the 

conceptual interpretation of river–groundwater interaction developed by Braaten and Gates (2001). Braaten and Gates 

(2001) describe general trends of river–aquifer connection in New South Wales catchments within the MDB, considered 

to reflect basin geomorphology. Typical catchment patterns moving down-catchment are described as: 

• Small streams draining the high relief upland areas derive a significant proportion of their flow from discharge 

from the fractured rock aquifers. 
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• Moving from the hills into the mid-sections of the larger rivers, the alluvial systems are well developed but still 

narrow and constricted by bedrock. The narrow floodplains mean that the relatively high rainfall produces 

shallow alluvial watertables and strong hydraulic connection between the river and the aquifers. Flux directions 

are variable along the narrow alluvial valleys and are often seasonally variable.  

• As the constricted mid-sections of the rivers give way to the wider semi-arid plains of the lower valleys, water 

levels begin to fall and river reaches are generally losing in nature.  

• Approaching the confluence of the major inland rivers with the Darling, Barwon and Murray rivers, factors such 

as basement highs and reduced aquifer transmissivity force groundwater levels near the surface again and 

hence the major rivers tend to be neutral or gaining.  

Generally the catchments observed follow the Braaten and Gates model quite well. In each catchment there is a distinct 

change in the groundwater–river interaction as the river leaves the relatively narrow palaeovalley and enters a broad 

alluvial plain to the west (or north in Victoria). This trend is evident in the Gwydir, Macquarie-Castlereagh, Lachlan, 

Murrumbidgee, Ovens, Goulburn-Broken, Campaspe and Loddon-Avoca regions. The alignment of these catchments is 

generally from east to west or south-east to north-west and the depth of sediments increases down the catchment as the 

rivers join the Murray River. These catchments have similar geometry to the catchments described in the Braaten and 

Gates model. The general pattern observed is gaining conditions in the highland areas changing to variable gaining and 

losing conditions downstream within the palaeovalley, represented on the maps as ‘low losing’, ‘low gaining’ or 

‘hydraulically neutral’. The flux changes to medium or high losing conditions as the river enters the large alluvial plain 

before changing back towards hydraulically neutral or low gaining conditions toward the lower end of the catchment.  

Differences within this general trend can be observed between the New South Wales and Victorian catchments. The 

length of losing reaches in the middle to lower part of the catchment is significantly shorter in Victoria. This is in part due 

to the geometry of the catchments, with the broad alluvial plains being shorter in Victoria. Further, the losing sections 

within the Victorian catchments tend to be losing at a lower rate than in New South Wales. This could possibly be 

influenced by the higher level of groundwater development in southern New South Wales. 

Other regions within the MDB, such as the Condamine-Balonne and Namoi, do not exactly follow the Braaten and Gates 

model. Within these catchments the river leaves the highland areas and the bedrock palaeovalley and enters an upper 

catchment alluvial plain with an increase in sediment thickness. Downstream the rivers pass through a bedrock high 

restriction, where the alluvial sediments shallow and are once again confined within a relatively narrow bedrock 

palaeovalley. After passing through a bedrock choke the rivers enter a broad alluvial plain and turn towards the south-

west to eventually join the Murray River. These catchments generally behave as two Braaten and Gates model 

catchments joined together, with an upper catchment and lower catchment. The upper catchment is aligned south-east to 

north-west. It consists of the highland areas and an alluvial plain leading up to the bedrock choke. The lower catchment 

has a north-east to south-west alignment. It begins at the bedrock choke and leads into the large alluvial plain continuing 

on to the end of the catchment. The Border Rivers catchment also follows a similar trend to that of the Condamine-

Balonne and Namoi catchments; the difference is that the upper catchment alluvial plain (on the Dumaresq River and 

Macintyre Brook) is much smaller than those of the Condamine-Balonne and Namoi, and hence the first Bratten and 

Gates model is compressed compared to those two catchments. 

Similar to the Braaten and Gates model the river fluxes observed within these catchments are roughly related to the 

depth of unconsolidated sediments. Within the palaeovalley in the upper catchment the sediments are relatively shallow 

with a shallow watertable and generally gaining river conditions. The depth of sediments increases on the upper alluvial 

plain and consequently the groundwater levels fall relative to the river, causing generally losing conditions. Passing 

through the bedrock choke areas, the depth of sediments decreases and there is a rise in the watertable causing a 

reduction in river losses or change to gaining conditions. The depth of sediments increase rapidly as the rivers open out 

onto the broad alluvial plain.  Within these sections of the catchment the river losses are generally medium to high with 

the river and groundwater often ‘disconnected’.  

The connectivity mapping shows the extent and magnitude of highland gaining reaches within the Condamine-Balonne 

and Border Rivers catchments are smaller than within many of the southern catchments. These findings from the 

connectivity mapping fit with the findings of Neal et al. (2004). Neal et al. (2004) found significantly lower baseflow 

indices (BFI) from rivers at the base of the highlands in the northern MDB catchments compared to southern catchments. 

Within the northern catchments, annual baseflow indices at all gauges were classified generally between zero and 0.2. In 

Victorian and southern New South Wales catchments almost all gauges recorded annual baseflow indices between 0.4 
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and 0.8. A similar trend can be observed in the connectivity map with a greater extent of losing conditions in the northern 

part of the MDB, in the upper parts of the catchment. 

Difference in climate is likely to be the main factor contributing to the change in baseflow pattern observed from the south 

to the north of the MDB. In the south, rainfall is winter dominant, but in the north it is summer dominant. A higher 

proportion of rainfall could therefore be ‘lost’ to evapotranspiration in the north, and hence relatively less recharge (and 

hence baseflow discharge) may occur compared to the south. Other factors may also be contributing to this trend, such 

as differences in rainfall intensity from north to south, topographic differences, etc. Further work would be required to 

identify the key factors and their relative contribution to the observed difference in baseflow pattern. 

The connectivity mapping highlighted areas where groundwater extraction is signifcantly affecting surface–groundwater 

interactions. For example, the Murrumbidgee River changes from medium gaining conditions to medium losing 

conditions in the vicinity of Wagga Wagga. The river changes back to gaining conditions downstream of the city. The 

change to losing conditions appears to be the result of groundwater extraction rather than changing hydrogeological 

conditions. In the upper Condamine-Balonne catchment, the Condamine River downstream from Warwick changes from 

medium losing to ‘disconnected’ high losing conditions. The disconnected conditions at the upper end of the catchment 

also appear to be the result of groundwater extraction from the alluvial aquifer. It is interesting to note in Figure 2-1 that 

virtually all of the maximum losing (i.e. ‘disconnected’) reaches are coincident with areas that have been subject to 

groundwater modelling (i.e. areas of the highest and most concentrated development), suggesting that ‘disconnected’ 

river conditions in the MDB may be largely a phenomenon occurring after groundwater development. 

5.2 Future trends 

Assessment of groundwater hydrographs across the MDB shows significant changes have occurred within most 

catchments within the last ten years, with groundwater levels generally falling. The exceptions are the Border Rivers and 

Gwydir regions where groundwater levels remained static or had risen slightly. The generally lower groundwater levels 

coincide with below average rainfall over the same period. (Hydrographs from across the catchments commonly indicate 

greater fluctuations in water levels within the alluvial valleys confined by bedrock rather than the broad alluvial plains.) 

Response times to lower rainfall conditions are likely to be longer in mid to lower catchment areas where the river enters 

the broad alluvial plains. These latter areas have deep watertables and the river and groundwater are often 

‘disconnected’. These plains have significantly larger storage, and progressive fining of materials towards the end of the 

catchment mean these areas normally have relatively lower hydraulic conductivities. On these broad alluvial plains with 

longer response times, equilibrium conditions to the recent dry climate have probably not yet been reached. This means 

river losses in hydraulically connected downstream areas of the catchments may increase in the future in response to the 

dry climate over recent years. It is further anticipated that the extent of ‘disconnected’ losing streams will become more 

widespread as equilibrium conditions are reached, assuming the current climate continues. Response times within the 

upper catchment palaeovalleys will be more rapid than on the broad alluvial plains. These areas have relatively shallow 

watertables (<10 m) and higher hydraulic conductivities (>5m /day) with a smaller storage. Due to the relatively rapid 

response times within the smaller palaeovalleys the connectivity mapping is likely to approximately reflect equilibrium 

conditions from the recent dry climate in these areas. 

The smaller storage within the palaeovalley alluvium means that groundwater extraction has a greater impact on the 

magnitude and direction of river fluxes compared to on the broad alluvial plains. In areas where the magnitude of 

groundwater extraction has not changed in recent years, the palaeovalley alluvium may have reached a steady state 

condition. However in areas where extraction rates have increased in recent years, the magnitude of river losses will 

continue to rise in the future as the system continues to readjust.  
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5.3 Implications and future work 

SKM (2003) mapped river–aquifer interaction for major rivers across the MDB, albeit with a reduced scope compared to 

that of this assessment. The SKM (2003) assessment was based on data in the late 1990s. The extent and magnitude of 

losing river reaches found in this project was generally larger than that reported in SKM (2003). In particular significant 

differences in river fluxes are observed on the Darling and Lachlan rivers and northern New South Wales catchments. 

The differences may relate to the different dates of the two assessments, the more detailed nature of this assessment, or 

a combination of these two factors. 

The improved understanding of surface–groundwater interactions within the MDB provided by this assessment will have 

implications for how the system is managed. There appears to be a trend of increasing extent of losing river reaches. 

The extent of losing reaches may further increase in the future as the broad alluvial plain areas continue to adjust to 

changed climatic conditions, time lags from groundwater development are realised, and groundwater extraction 

increases in some areas. Careful management will be needed to limit exacerbation of this trend. 

Identifying the extent and magnitude of river losses will enable more accurate accounting of water resources. Surface–

groundwater modelling has often previously budgeted a percentage of water as ‘unaccounted losses’. These losses may 

now be accounted for as losses from the river to groundwater. 

The results of the surface–groundwater connectivity mapping may also be significant for future surface water 

management. On the Campaspe River, for example, losing river conditions downstream of Lake Eppalock will require 

consideration when releasing flows to the river. The results may be useful in predicting the efficiency of released flows 

from different locations at different times of the year.     

This assessment has also highlighted the need to improve methods for identifying locations where rivers are truly 

‘disconnected’ from groundwater.  

It is envisaged that these connectivity maps will be updated in the future, as additional data is collected, and 

improvements to the method are implemented (including those discussed in this report). In the interim however, the 

maps provide a valuable tool when undertaking initial conceptualisations of surface–groundwater interactions.  The maps 

are an ideal tool for raising awareness of stream–aquifer interaction, and for initiating discussions regarding the process 

of surface–groundwater interactions. 
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Appendix A Regional surface–groundwater 

connectivity maps 

 

 

 

 
 

Figure 5-2. Surface–groundwater connectivity for the Barwon-Darling region 
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Figure 5-3. Surface–groundwater connectivity for the Border Rivers region 

 
 

22 ▪ Surface–groundwater connectivity assessment © CSIRO 2008 



 

 

 
 

 
 
 
 

Figure 5-4. Surface–groundwater connectivity for the Campaspe region 
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Figure 5-5. Surface–groundwater connectivity for the Condamine region 
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Figure 5-6. Surface–groundwater connectivity for the Goulburn-Broken region 
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Figure 5-7. Surface–groundwater connectivity for the Gwydir region 
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Figure 5-8. Surface–groundwater connectivity for the Lachlan region 
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Figure 5-9. Surface–groundwater connectivity for the Loddon-Avoca region 
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Figure 5-10. Surface–groundwater connectivity for the Macquarie-Castlereagh region 
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Figure 5-11. Surface–groundwater connectivity for the Murrumbidgee region 
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Figure 5-12. Surface–groundwater connectivity for the Murray region 
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Figure 5-13. Surface–groundwater connectivity for the Namoi region 
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Figure 5-14. Surface–groundwater connectivity for the Ovens region 
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