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Abstract—In this paper we present a low-cost wireless sensor ready for widespread commercial deployment. As explained
network (WSN) platform, called Wireless Ad hoc System for in the next section the technology that is most appropriate

Positioning (WASP), that has been developed for high accum  ¢o terrestrial localization is the time of arrival (TOA) bed
localization and tracking. This platform uses the time of arival ranging

(TOA) of beacon signals periodically transmitted by the noes at
known times for localization. The system was designed to hav ~ We have developed a WSN platform that we call WASP

a unique tradeoff between hardware complexity and procesag  (Wireless Ad-hoc System for Positioning) that providesuacc
complexity to provide high accuracy at minimal cost in compéx  rate TOA-based localization, in addition to wireless commu
radio propagation environments. To enable the system to péorm nication, using low-cost electronics. In this paper we dbsc

well in realistic environments it was also necessary to delap . . - -
novel extensions to existing algorithms for the measuremerof the WASP architecture and the signal processing algorithms

TOA, localization, and tracking. In this paper we describe he including some novel extensions to existing techniques. A
architecture, hardware, and algorithms of WASP and presente- novel TOA estimation algorithm was developed that uses
sults based on field trials conducted in different radio promgation g pand-stitching approach to obtain a broadband channel
environments. The results show that WASP achieves a ranging impulse response (CIR) using narrower band electronicis. Th
accuracy of 0.15 m outdoors and 0.5 m indoors when around . .
twelve anchor nodes are used. These accuracies are achieve®NaPI€S lower cost electronics to be used compared to direct
with operating range of up to 200 m outdoors and 30 m indoors. Measurement of a broadband CIR. The TOA is computed from
This compares favorably to other published results for syssms the CIR and the algorithm that we have developed [14] is
operating in realistic environments. shown to have lower computational complexity compared to
Index Terms—Wireless sensor networks, radio localization and Other super-resolution algorithms described in the liteea

tracking, time of arrival, two-way ranging, multipath, ind oor From the TOA the range between node pairs is computed.

propagation, least squares estimation. We also present a novel robust least squares (RLS) local-
ization algorithm that effectively removes outlier rangean
. INTRODUCTION surements commonly encountered in multipath propagation

V@_nvironments.

Wireless sensor networks (WSN), consisting of small, lo . ) .
The WASP platform has been extensively field tested in a

cost, and self-organizing nodes that are suitable for repid

ployment promise a wide range of applications such as Habita"9€ of radio environments and applications includingtspo
monitoring, assisting emergency first responders, auiomatPUPlic safety, and mining with support from government and

and safety in the mining industry, and performance mormitpri commercial organizations. This paper presents results fro
of athletes. For many WSN applications localization, iteg S°Me of the field trials. The results show that WASP provides

determination of the spatial coordinates, of the nodes is §Rcurate ranging and localization performance in bothondo
important requirement [24]. and outdoor environments and these results compare fdyorab

Existing localization technologies such as the weII-knomlNith other systems for which published results of evalustio

Global Positioning System (GPS) [13] can be used for sorfferealistic environments are available. _
WSN applications but for many others suitable technology The res_t of this paper is orgamzed_ as follows_. In Section I
does not exist or is too expensive. For example, GPS geperdfe describe the challenges faced in developing a low-cost
does not work indoors or underground, and performs poorlf?A-localization platform, and highlight some existingssy

in urban canyons. Even in clear outdoor environments tfgMms and their limitations. Section IIl presents the WASP
accuracy provided by low-cost GPS receivers (of the ord@fchitecture and algorithms that constitute the signaellev
of several of meters) is not adequate for applications sschR{0C€ssing such as TOA estimation and ranging. In Section V
tracking athletes for performance monitoring. the localization and tracking algorithms studied for inmpéan-

Several research groups [1], [2], [21], [25], [27] have beddtion in the WASP platform are explgined. Section VI pr_éasep
working to develop a high accuracy terrestrial Iocalizuittioth_e performan;e of the system using data.collected in field
systems (an extensive list of publications in this area aan Bials. Concluding remarks are given in Section VII.
found in [19]) using different technologies, although name

[l. WIRELESS LOCALIZATION: CHALLENGES AND
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Mark.Hedley @csiro.au tracking of the nodes in WSNs that are not supported by
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current technology. One example is tracking public safety
officials such as fire fighters undertaking a mission inside
a building. A localization system for this application must 106
provide high accuracy (of the order of one meter) in a
wide range of indoor radio propagation environments and be
suitable for rapid deployment, yet be small and low cost.sehe
are a challenging set of requirements not fully addressed by
any commercial system to date, and a system overcoming thesi
challenges will find use in many other applications inclgdin
military and mining.
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Operation in a wide range of indoor environments requires 25
that the system is robust to fading and severe multipathatsgn
Unfortqnately Iocallzatlon_relles_on the measurement oéadi o : o 15 20 2 30
path distances, so multipath is a problem and cannot be VGA Setting

exploited as in communications. Rapid deployment requires
that the system does not require prior knowledge of tHdo- _1. Vgriable propagation delay in low-cost hardware dsirection of
building, such as maps, or environmental information such 3 94"
signal strength surveys. It is also not feasible to instalf a
cabled infrastructure in such situations, so all hardwaostm
communicate wirelessly.

There are a number of technologies that are not suitab
for this application. Systems using ultrasound (such as t
ORL ultrasonic system [37], Cricket [27], and Medusa [32])

10 ns, which translates to a ranging error as high as 3 m, if
ot corrected.

®rhere are few current systems that use TOA for high
Qgcuracy ranging and localization. Systems based on UWB
. ; 5], [34] have the advantage of high bandwidth, but the low
infra-red cannot be used as these signals do not travelghro ower severely restricts the range of operation and UWB is

walls. GPS cannot be used as it is generally unavaila 8t yet legal in many jurisdictions outside the USA. The

!n?ootrs. '{here arhe OtheTI slysten:jsbthat duset?xllsu_ng tGEﬂBSt|5>reci$ion Personnel Locator (PPL) [1] is a research system
infrastructure such as cellular and broadcast televisigmess, that seeks to address the specific needs of fire fighters. The

however, their accuracy is typically many tens to hundreds g, 5 ot obust to severe multipath interference and regui

meters, which .is insuﬁicieqt fqr thi.s application. A COMMOR; radio subsystems — one for localization and one for data
approach for md_oor Ioc_:allzatlon Is to use _recelved S'gn_%mmunications — which increases the size, cost, and power
strength (RSS) fingerprints from access points or_oth_er IEc'msumption. Further, the algorithm used for localizatisn
stalled_ mfrastructure [2], [25], [38] RSS—pased locadian is computationally intensive. Another system addressinglaim
not suitable for ra_1p|d deployment as thg signal strengtiesur reqélirements is presented in [20]. This system overcomes
is slow and requires access to the e_ntlre area. Systems_bﬂﬁg problem of variable node propagation using a loopback
on the measurement of angle of arrival are Iargg (Conta'n'ﬂ%asurement within each node, which is not possible with
steerable antennas or antenna arrays) and provide poor at&-cost radio devices. Further, the results presente@@j [

racy in multipath environments as the strongest signals 65?% based on simulations and measurements obtained using

often not thetd|ﬁpt S|grf1als._ TrlnsTIOezves syst?ms_tbglsecﬁ:r)n ecision laboratory equipment; hence, they do not refteet t
measurement of time-of-arrival ( ) as most suitable for o issues encountered in multipath environments and the use of

applications. low-cost hardware
There are a number of challenges in obtaining high Ioca?— '

ization accuracy using TOA-based systems. The key challeng
is to measure the TOA to an accuracy of the order of . WASP SySTEM OVERVIEW
one nanosecond using low-cost hardware in difficult radio A WASP network consists of a number of WASP nodes.
environments. Another challenge is the time and frequen8pme of these nodes, called anchor nodes, are at known fixed
difference between the local clocks in different nodes. [#/hilocations, and the rest of the nodes, called mobile nodes,
the use of a cabled infrastructure between anchors — asds uaee localized with respect to the anchor node locations. The
in a number of systems (e.g., Inmotio [16]) — would easilgnchor node locations can be determined using buildingsplan
eliminate the synchronization problem, such a system is mat conventional surveying techniques. For a WASP network
feasible for rapid deployment. that extends outdoors from a building GPS can be used to
Further, the propagation delay through the electronicst miscate outdoor anchor nodes and WASP can track indoor nodes
be known so that the range is computed from the propagatiwhere GPS is not available.
through the air only. The propagation delay in the electteni In typical applications of our system, such as tracking
however, varies with parameter settings and temperatigel F athletes or fire fighters, the anchor nodes surround the area
shows the variation of the propagation delay in a WASP notie be monitored and the measured TOA is used to determine
for different settings of the variable gain amplifier (VGA) o range between the mobile and anchor nodes. The mobile nodes
the receiver. It can be seen from the figure that for some VG#e localized and tracked using the measured ranges to the
settings the excess propagation delay in the hardware is osachors.
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Fig. 2. Node Hardware Architecture.

While the minimum number of anchor nodes for twoscientific and medical) frequency bands, which are availabl
dimensional localization is three, we typically deployweén internationally and have bandwidths of 83 MHz and 125 MHz
eight and twelve anchor nodes to improve accuracy and respectively. The WASP hardware was built to work in both
allow for the fact that not all mobiles will be in radio rangk obands, however, trials to date have used the 5.8 GHz band
all the anchor nodes. Since there is no distinction betwisen due to greater bandwidth and less interference from wiseles
WASP nodes used as mobiles and anchors, a WASP networkétworks.
also suitable for cooperative localization [24] in whichga
measurements between mobile nodes permit tracking of mo-
bile nodes that are not within the radio communication range WASP Hardware
of anchor nodes. While we have undertaken initial researchThe WASP hardware was designed to provide the flexibility
into cooperative localization [31] it has not been requif@d and capability to be used as a platform for WSN and localiza-
our applications to date and is not further commented upontiBn research, yet also be sufficiently small and low power fo

this paper. field trials. The former was achieved by incorporating much
_ _ of the functionality in software and firmware, i.e., WASP is a
A. Radio Spectrum Selection software defined radio system [7].

In WASP we use TOA measurements for ranging. TOA can To design a system that is compact and low-cost we decided
be determined either by measuring the phase of the receivedise a highly integrated commodity integrated circuit) (IC
narrowband carrier signal or by measuring directly thevatri for the radio frequency (RF) subsystem. Since no such RF IC
time of a narrow wideband pulse [22]. Although the formeexisted in the mass market that would provide a bandwidth
approach, which is used in real-time kinematic GPS, can gioéup to 125 MHz, we selected a WLAN (wireless local area
accurate ranging performance outdoors, its performance iretwork) RF IC designed for 802.11 family of protocols. This
doors or in the presence of multipath is significantly degcad RF 1C, however, does not cover the entire 125 MHz band-
In WASP we use the latter approach. width, and in our design to utilize the entire bandwidth, the

The accuracy of the TOA measurements, and hence firequency band is divided into eight overlapping subché&nne
range, depend upon the bandwidth of the transmitted signéhe division of the bandwidth into subchannels is contoblle
The standard deviation of the ranging error between a pairlof software rather than a fixed division in the hardware. The
nodes is inversely proportional to the bandwidth of the aigntransmitter frequency hops between the subchannels and the
[10]. We found that in typical office buildings a bandwidth ofeceiver stitches the received signals in different subchbs.

100 MHz is required to obtain a ranging accuracy of the orderAn advantage of the narrower band subchannels is the
of a meter. This observation is consistent with measuresneldwer sampling rates for the conversion between analog and
made by other researchers [9]. digital signals, allowing us to use low-cost and low-power

Due to the prohibitively high cost associated with the useomponents. The disadvantage is that there is increasedl sig
of the licensed spectrum, most of the applications of istergprocessing complexity at the receiver to stitch together th
restrict us to use the unlicensed spectrum. We furthericestreight subchannels to reconstruct the full bandwidth sighia¢
the operating frequency to be below 10 GHz so that wmower and cost increase in the digital processing eleatsoni
can use low-cost radio electronics and have reasonable isamore than made up for by the reductions in the radio and
dio propagation through building materials. These retins converter electronics. An example of the processing requir
leave us with only the 2.4 GHz and 5.8 GHz ISM (industrigbr band-stitching is presented in [30].
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mobile nodes that can be simultaneously tracked is the numbe
of slots in a superframe less the number of anchor nodes.

The MAC provides a distributed mechanism for the alloca-
tion of slots to nodes and enables slot reuse for nodes with
sufficient separation to be non-interfering. Each node Im&s o
slot reserved in each superframe for its beacon, and can also
negotiate additional reserved slots for data. Nodes cam als
send data using a contention access mechanism in unreserved
slots. Data packets are transmitted using a single subehann
and beacon packets are data packets that also include a
signal designed to enable high accuracy TOA measurement
at receivers. This TOA signal includes transmissions on all
of the subchannels transmitted sequentially from the lowes
subchannel.

The physical layer is similar to that used in 802.11a/g.
Fig. 3. Two versions of the WASP node. We use 15 MHz of bandwidth, orthogonal frequency division

multiplexing modulation, convolutional encoding, andévti
decoding. To ensure high reliability we have used binaryspha

Fig. 2 shows a block diagram of our hardware architecturghift keying and quadrature phase shift keying constelfti
Most of the radio functions are performed by the Maxinfor data rates of 4 and 8 Mbits/s. The TOA signal consists
MAX2829 RF IC including conversion between basebar@f identical noise like signals with good correlation projees
and radio frequency and frequency synthesis. The digigitd 18 MHz bandwidth on each of the subchannels. Each of
processing is performed by a field programmable gate arégse has a duration of 41s and there is an idle period of
(FPGA) for low level processing and a digital signal process20 s between transmission on each subchannel to allow the
(DSP) for high level processing. A detailed descriptiontod t frequency synthesizer to settle to the next carrier frequen
WASP hardware can be found in [10].

Two versions of the WASP hardware are shown in Fig. 3. IV. WASP ALGORITHMS

Both implement the block diagram shown in Fig. 2 and |n each superframe each node transmits a beacon in a
have the same functionality. The larger node, however, hgsecified slot and all nodes measure the TOA of received
increased connectivity options and a larger battery. Thveepo peacons. The set of beacon transmit and receive times for a
consumption of the hardware is 2 W while receiving angyperframe is processed to determine the location of mobile
2.5 W while transmitting. In high update rate applicationgodes. The processing stages consist of performing band-
such as tracking athletes the battery life between chargggching to reconstruct the broadband CIR between each
is approximately 10 hours and 2.5 hours for the large ag@nnected pair of nodes, performing super-resolution TOA
small nodes respectively. In low update rate applicati@tis@ estimation from the CIR, determining the range between each
power management can be employed to greatly extend {Wr of nodes, and finally performing localization and triagk
battery lifetime. of the mobile nodes using the measured ranges. Algorithms
for TOA and range estimation are described in this section
and that for localization and tracking in the following dent

C. Wireless Protocol

Each WASP node periodically transmits a beacon that
contains data for network configuration, may contain a us’é‘r
payload, and is used for tracking by measuring the TOA of re- The bandwidth available to any system is limited by regu-
ceived beacons. For temporally uniform tracking and adeurdatory and hardware restrictions, and this in turn restrtbe
measurement of the TOA, the beacons should be regular @&sdievable ranging accuracy of the TOA-based systems. This
contention free and to facilitate this a time division npiki has prompted several researchers to propose super-fesolut
access (TDMA) medium access control (MAC) protocol i§OA measurement techniques that are inspired by similar
used. Time is divided into slots and each node is allowdgchniques available for high resolution spectral esionat
to transmit in one of the slots. A group of slots is called a To better understand the similarity between the super-
superframe, which is a periodically repeating structure. resolution TOA estimation and spectral estimation, caarsid

For tracking athletes we typically use 2.5 ms slots arfi€ multipath channel model
40 slots in a superframe of duration 100 ms, providing ten L-1
location updates per second for every node. In our system h(t) =Y aid(t-m7), 1)
the slot duration and the number of slots in a superframe 1=0
are configurable and hence, we can make trade offs betwedrereh(t) is the CIR,L is the number of significant multi-
the number of active nodes, location update rate, and povpaths, andy; and r; are, respectively, the complex amplitude
consumption to suit each application. As slots are used fand time delay of théth path.j(.) denotes the Dirac delta
anchor nodes and mobile nodes alike, the maximum numbeffafction.

TOA Measurement
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Fig. 4. CIR in an outdoor environment showing no significaniltipath  Fig. 5. CIR in an indoor environment showing significant npath
condition. condition.

We can obtain the equivalent channel frequency responsgsj en the CIR there are numerous ways in which the TOA
H(f) _by _takmg the Fourier transform ok(t). Therefore may be chosen and the exact method has a significant impact
H(f) is given by on the performance of the system. For the outdoor case the

L-1 peak of the impulse response is a good choice as in Fig. 4.

H(f) =), arexp(-y277f). (2) In indoor or multipath environments such a technique does

=0 not work since the strongest peak cannot be used. In this

where; denotes the imaginary unit, i.e.= v/~ 1. case the direct path may have a lower signal strength than a

I the frequency and time variables in (2) are interchangegflected path. Further, there can be multiple reflectedasign
we obtain the classical harmonic signal model. This suggeS¥erlapping with the direct path signal resulting in thetfirs
that the examination of the spectral contentsfdff) will give peak of the combined signal being delayed relative to th& pea

the multipath amplitudes and delays. It then becomes plessiBf the direct path signal. Using a 125 MHz bandwidth signal
to apply the well-known high-resolution spectral estiroati the pulse width is 16 ns between nulls, and hence, to obtain th

techniques to estimate the TOA. desired nanosecond level accuracy a super-resolutiooagipr

One of the popular high-resolution spectral estimatiohtecMust be used to find the TOA of the direct path signal.
niques ESPRIT (estimation of signal parameters via ratatio  In our implementation, we choose the TOA as a (small)
invariance technique) [26] is used to estimate the TOA fixed fraction (-18 dB) of the height of the first peak in
[29]. Variations of the MUSIC (multiple signal classificati) the impulse response. This value has been chosen as small
algorithm are proposed for TOA estimation in [8] and [18]. Is possible while still being reliably above the noise level
[6], a technique based on the matrix pencil method is praghosés seen in Fig. 8 the noise level is quite constant with
Using simulated channel data the performance of the supegspect to the received power level, so an adaptive threéshol
resolution TOA algorithms is compared in [39]. in not required. By fixing the fraction, the TOA estimate is

Using the above mentioned super-resolution algorithmsipgependent of the amplitude of the first peak, and thus gives
not practical in our system. Even a modest update rate @J0d results in the case where the line of sight (LoS) path is
2 Hz in a network with 20 nodes requires each node tBe dominantpath. By making the fraction as small as passibl
calculate 40 TOAs per second, i.e., 25 ms per TOA estimatidhis method also has a reasonable chance of picking up the
In sporting applications, higher update rates reduce this lt0S signals that are hidden by more powerful later arriving
just a few milliseconds per TOA calculation. The supesignals, although the accuracy is reduced.
resolution algorithms mentioned above require the calimia  In our experience, using actual measured data in indoor
of eigenvalues or inverses of matric&([M/®) complexity for environments, the performance of the algorithm used in WASP
M x M matrices] with sizes on the order of 10000 or bigger. is as good or better than the performance of the MUSIC

The standard way of determining the TOA, as used in GR®d ESPRIT super-resolution algorithms, while being vyastl
for example, is to estimate the CIR by correlating the rezeiv simpler to implement [the most complex operation is an FFT
signal against the transmitted signal. An equivalent neétioo with complexity orderO (M log(M))]. This contrasts sharply
determine the CIR is to multiply? (/) by a window function with the simulation only studies of [6], [8], [29] and [39] |
and then take the inverse Fourier transform. Sample impulse however, in line with the results obtained using measure
responses measured by our system are shown in Fig. 4 aath in [22]. For example, Figures 7 and 9 in [22] show
Fig. 5. Fig. 4 was measured outdoors and shows a clear maitly marginal differences between the results for the MUSIC
peak corresponding to the direct path. Fig. 5 was measui@dorithm and the correlation-based approach. The simoulat
indoors and shows strong multipath propagation. only studies either use an unrealistically simple chanraeleh
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or use channel models designed for communications which

effectively limit the number of paths to the number of degree £ (1)

of freedom required to represent the channel given the @&ann Y A

bandwidth and the delay spread. These models fail to capture : to(tP)

the true range of possible TOAs given a particular CIR. See TAB

[14], [15] for a detailed discussion on this point. :
We have also investigated a template matching approach

based on the shape of the leading edge, which effectively

gives a variable threshold. Details of this template maighi ta(t])

algorithm along with comparison results can be found in [15]

t3(t5)

Node A Node E

B. Range Estimation . ) )
9 ] ) Fig. 6. The two-way range between a pair of nodesind B is measured
TOA ranging can use either a one-way or two-way exwsing an exchange of signals between each nodes.

change of signals between a pair of nodes. One-way ranging
requires synchronization of the clocks of all the anchocsian
generally used to estimate pseudo-range, requiring thefusds the substantial time delay between the two beacons ofa nod
a time difference of arrival (TDOA) localization algorithm pair and the processing algorithms must allow for factochsu
Synchronization errors and the poorer accuracy of TDO&s node motion and node clock frequency differences in this
localization algorithms compared to TOA algorithms result interval.
one-way ranging having lower accuracy than two-way ranging
so we focus on the use of two-way ranging. V. LOCALIZATION AND TRACKING ALGORITHMS

In two-way ranging, which is also called round-trip ranging ) ) )
[20], as shown in Fig. 6, node A transmits a wideband puIse't is necessary to consider different techniques for local-
to node B. After a small delay of4z, node B returns a ization in indoor and outdoor environments because of the
pulse back to node A. In this figure, i = 1,2,3,4 denote varying propagation conditions of these environments. We
the absolute times in an unknown time frame common f®Mpare three localization algorithms including a new sbbu
both nodes. The times shown within brackets denote tif&st squares (RLS) technique that we have developed. The
corresponding times with respect to the local clocks. THEbuSt technique removes the outlier range measurements

absolute and local times for nodeare related by effectively and compared to the standard LS technique gives
improved localization accuracy.
ti = an(ti —ton), ©)) The positioning accuracy can be further improved by track-

. ing the node. Tracking also allows the estimation of kineenat
whereq,, andt, , are the frequency and time offsets of node . . .
n, respectively. parameters such as velocity and acceleration. In this paper

Note thatt£ and¢? are the transmission times at nodés we consider two tracking approaches. In the first approach

and B, and are known precisely and 5 are the received the positions obtained in the localization step are used in a

times at these nodes and are measured by the respeclﬁeleman filtering framework to track the nodes. In the second

nodes using the super-resolution technique presenteddn proach the localization step is removed altogether aed th

tion IV-A. Knowing these times allows us to calculate theange measurements are fused directly using a nonlinear filt

time of flight and the procedure used in WASP is explained in
detail in [11]. The procedure corrects for a constant fregye A. Localization Algorithms

oﬁsgt betwe.en the local clocks in the node pair, and constanWe compared three localization algorithms: the standard LS
relative motion between the node pair. The corrected range

between anchor and mobile nodes is determined at the timg new RLS, and the projection onto convex sets (POCS). In

. . . o IS section we provide a brief description of the standa®d L

at which the mobile node transmits. This is done so that In : . .
o . and POCS algorithms and the details of the RLS algorithm.
the subsequent localization calculation all ranges betwaee .
particular mobile node and the anchor nodes are computed a}) Least Squares AlgorithmAssume thgt_ the_ measured
a common time. Therefore the location of the mobile node f&"9€ between unknown node and the anchiergiven by
computed at the time at which it transmitted its beacon. ri =) 0-86; | +w; i=1,2,
In much of the literature it is assumed that a two-way

measurement is between a particular node pair with littlayde whereN is the number of anchors in the netwoéks [z, y ]
between the initial beacon and the response,gz,~ 0. For is the unknown location of the node, a®) = [z;,v:]"
a fully connected network of N nodes there aw@/2 node is the known location of theth anchors.w; is the range
pairs requiring a total oN? transmissions to measure the twomeasurement noise, which is assumed to have a zero mean
way ranges between all pairs of nodes. In WASP each noaled o7 variance and| . | denotes the two-norm.
only transmits once for a total oV transmissions. The re- The well-known LS technique minimizes the sum of the
duction in the number of transmissions leads to a more povegruare of the difference between the measured and estimated
efficient and higher location update rate system. The dalensranges or in other words the range noise power [19]. The LS

N 4)

T
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. . . TABLE |
estimate of the unknown node locatiéh= [z,y]” is then THE ROBUSTLEAST SQUARES (RLS) ALGORITHM
given by . . .

Calculate node locatiof v using NLS algorithm fromN measurements
. N 9 Calculate corresponding location errox using (6)
Ors =argmin ) (r;— || 6-6; ) (5) repeat
) for all anchori e N do
Th inimizati bl in (5) i i d | d Remover; from the measurement set
e minimization problem in (5) is nonlinear and a close Calculate node locatiof y /;
form solution is not available. It can be solved using any gra Calculate corresponding location erref;/;
dient descent techniques. In this paper we used the iteriaBv enf‘fg:e 6Onyisenyi)
algorithm, which is based on a Taylor series expansion of the ¢ ;;,, Keny: < e, { s the biag then
objective function [3]. The gradient descent type alganith Remover; from the measurement set
require a starting point close to the actual solution. Qi 22:]9\’ = JYQ— 1
ini N =UnNyi
they may converge to a local minima or may not converge at  ge,, - minZeN/i
all. For localization using ranging, an initial solutionnche else
easily obtained using a linear approximation as explaimed i break
[33]. If the node is being tracked the prior track informatio end i
: g p until en; < a given threshold
can be used as well. return 6y

2) Robust Least Squares (RLS) Algorithifihe standard Note In the aboveN/: denotes all indexes from to N excepti, i.e.,
LS algorithm just described uses all the range measuremehts---,i-Li+1,..., N.
irrespective of their quality.In this paper we propose a robust
algorithm that tries to remove outlier measurements thinoug 0

an iterative process. — s

In the RLS algorithm, first we compute the node location :tiig
using the LS technique and the corresponding positioning —k=12
error [see (6)] based on all th&/ range measurements. 1wl —tzi'gc:l—
Then we remove each measurement in turn, and recompute k=12C=2

the node position and the corresponding positioning error.
The measurement, which when removed gives the smallest
positioning error, is identified and after applying a smadisb
towards using more measurements, if the positioning error
is still smaller, the removed measurement is considered an
outlier and eliminated from further consideration. Thiegess

10

Probability of error > Abscissa

is repeated until an acceptable positioning error is obthin 107 i
The positioning error is calculated as the product of the 0 % osition error (m) o
geometric dilution of precision (GDOP) and the ranging erro
That is Fig. 7. Complementary cumulative distribution functiorr faosition error
using velodrome data. In all cases, except standard LS, RaS used for
N (r . ” é _9. ” )2 positioning withx given in the legend. C, the number of range measurements
¢ = GDOP. Z v Ls v (6) in each data set artificially corrupted to create outliesszaéro unless stated

= N -2 ’ otherwise in the legend.

In the above GDOR- /trac€ AA’)-!, where’ denotes the

matrix transpose and the matrik is given by but severe multipath is present due to the metal structures
-2y . w—zn and building enclosure. Multiple measurements were made at
A=| 16601 7681 "~ [o-6nT | (7) each of the 15 surveyed locations, for a total of 6077 sets

fo-6.1 T6-6-1 ~~~ To-6x] of measurements for localization, where each set conthms t

Calculation of the positioning erreris based on the simpli- range to at most nine anchors. It is seen that whkilel.2
fying assumption that the noise in the range measurement$figvides the lowest error, values between 1.0 and 1.5 peovid
independent and Gaussian distributed, which while nattstri satisfactory performance, which is significantly betteartithe
true was found to work well with real data. A pseudo-codgtandard LS technique.
description of the RLS algorithm is presented in Table I. To further demonstrate the performance of our robust al-

The selection of the optimal bias is dependent upon gorithm using the same data we corrupted one or two range
the statistics of the range errors, however, we have foundmeasurements in each set by adding a uniformly distributed
practice that a wide range of values provide acceptableperfrandom noise in the range [-10,10] m. The results are also
mance. Fig. 7 shows this using real data collected by WASown in Fig. 7 and these cases are denoted in the legend by
in a velodrome, where the LoS measurements are availafle 1 and C= 2 for one and two large outliers, respectively. It

) ' ' _ ' is seen that with one range outlier there is little additl@meor,

A weighted LS algorithm can be envisaged to incorporate oreasent gnd that even with two outliers nearly 95% of the position

quality. If the measurement noise is Gaussian distributieeln the optimal . " . .
weights are the inverse of the measurement noise variafigading the Values have little additional error. The LS technique faile

optimal weights for other distributions, however, may netfbasible. converge for all measurement sets even with a single autlier
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These results show the substantial improvement that canrmg known, following [23], we used the Cramér-Rao lower
obtained using our RLS algorithm. bound (CRLB) instead.

3) Projection onto Convex Sets (POCS) Algorithifhe Since the state-space model defined by (10) and (11) is
POCS algorithm was proposed for localization in [12]. Ualiklinear, the well-known Kalman filter (KF) can be used to track
the LS technique where the error between measured dhd localized nodes, details of which can be found in nunerou
estimated range is penalized quadratically, the POCSitligor texts including [3].
applies a penalty only when the estimated range is greater
than the measured range. As a result this algorithm c&n Direct Fusion of Range Measurements
provide better results when the range measurements haee lar Another approach one could take to track a node is the direct
positive biases, which typically is the case in strong rpalth  fysion of the range measurements using filtering techniques
environments. without explicit localization of the node as a prior step.

In the POCS algorithm, each range measurement is usedie reason for considering this approach is that when there
form a convex constraint on the unknown node position. Withre outlier range measurements, the localization stepdcoul
range measurements the convex set is defined by amplify it, leading to reduced tracking performance.

D, - {0 eR”: [ 0-6; | < m}7 i=1.2,N. (8) Thln this approach the state model remains the same as in (_10).
e range measurements of all the anchors at a given time
This effectively transforms the localization problem irgo are used to form a measurement veatpr [r1,72, N ]t

convex feasibility problem [12]. That is Then the following measurement model is easily obtained.
N N 5 U1 = h(Xpe1) + Wit (13)
Opocs = () D; e R*. ) . . .
i=1 whereh(.) is the measurement function given by
Starting from a random initial point, for each constraifit, i V(z-21)2+(y-u1)?
the constraint is not satisfied the point is updated by ptinigc b | V@ —22)2+ (y-y2)? 14
it onto the convex set defined by that constraint. Given that (i) = : (14)
the intersection set is non-empty, this process is guagdnte \/(a:—:rN)2 +(y-yn)2

to converge to a feasible point [12]. In our implementatién o
the POCS algorithm, we used a number of different starti
points and the algorithm is allowed to run for a fixed numb
of iterations for each starting point. The resulting poiate
averaged to obtain the position of the unknown node. Th%
procedure gives the approximate centroid of the intersecti®
region.

Wil = [W1ks1, W2 k41, -, WN E+1] " IS the range noise
ctor having covariance matrig = diag(o?,03,...,0%).
With the nonlinear state space model defined by (10) and
3), a nonlinear filter is required for state update on thigalr
a new set of measurements.
A number of nonlinear filtering algorithms are available
for state estimation [28]. The extended KF (EKF) uses a
Taylor series expansion to linearize the nonlinear mods, a
B. Tracking Localized Nodes propagates the mean and covariance of the state through the
The localization accuracy of the algorithms considered c4Rearized state-space model [3]. The unscented KF (UKF)
be improved by applying a filtering algorithm on the estindatel/Ses a deterministic sampling approach in which the state
nodes positions. Leky, = [z, ik, ik, ¥, Ur, ix ] be the state IS represented by carefully chosen sample points [17]. &hes
vector at timek, where(z, y), (i,7), and(i, i), respectively, Points are propagated through the nonlinear system without
are the pOSitiOﬂ, Ve|0city' and acceleration Componenmm any linearization of the state space model as in the EKF. It
2 andy directions. If we assume that the node dynamics s been shown that the UKF can perform better that the EKF
adequately represented using a linear motion model, theen tR6]. Further, the UKF does not require the calculation of

state equation can be written as Jacobian or the Hessian of the nonlinear state-space dunscti
Hence, we selected the UKF for the direct fusion of the WASP
Xi+1 = FiXp + Vg (10) measurements.

1) Multiple Model Estimation: The range measurement

where Fj; is the state transition matrix ang, the process _ . - : .
. L . : noise characteristics are dependent on the radio propagati
noise, which is assumed to be a white Gaussian sequence.

having covariancedx. Since the localized node position is nvironment. Therefore unless a measurement campaign is
g ke b conducted before the deployment of the system, the range

considered as the measurement, the measurement equation is o : .
noise characteristics such as the variangeis not known

given by g 11 a priori. And as mentioned before for applications that iexju
Zh+1 = H X4l + Whel (1) rapid deployment such an approach is not suitable.
where H is the measurement matrix given by In this paper we c_:ons_ider an alternate approach in_ which
a multiple model estimation, where the measurement is char-
H= [1 0000 0] (12) acterized by not one but several measurement models each
000100 having different noise variance, is used. The well-known

andwyg,1 is the measurement noise, which is the localizatianteracting multiple model (IMM) estimator [3] can then be
error. In our implementation since the covariancewpf; is used to update the node state.
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Fig. 8. Measured standard deviation of ranging error andCieenér-Rao Fig. 9. Range error distribution between anchors and thesodthe soccer
lower bound. field trial.

VI. SYSTEM PERFORMANCE 0.04

We performed extensive field trials to evaluate the perfor-
mance of WASP. In this section we first present the ranging ac- .03}
curacy of WASP in different environments and then preseat th
results of the localization and tracking algorithms deseuliin

the previous section. 0.02f

Relative Frequency

A. Ranging Performance

1) Ideal Conditions: We first evaluated the ranging per-
formance of WASP under ideal conditions by connecting two
nodes using cables. The performance of the system at differe 0 : : :
. . .. -10 -5 0 5 10 15
input signal levels was measured and the standard deviatior Error (m)
of the ranging errors is shown in Fig. 8, along with the CRLB

on the TOA estimation. The CRLB is given by [35] Fig. 10. Range error distribution between anchors and treesian the
indoor LoS trial.

1
I (15)

8m2yBW? o o _
where + is the signal-to-noise ratio (SNR) and BW is théransmlts twice. This gives a location update rate of 25 Hz fo
edach node.

bandwidth of the signal. These measurements were ma ‘f:ig. 9 shows the range error distribution obtained in this

at 5.8 GHz and WASP has a bandwidth of 125 MHz f’ﬁial. One can see that in this trial the WASP provides high

this frequency of operation. The SNR is calculated assuming. . . i
; . T r&nging accuracy, with nearly 85% of the ranging errors are
thermal noise and a receiver noise figure of 5 dB. less than 15 cm

One can observe from Fig. 8. that the ranging performan(_:e?)) Indoor LoS Trial: This trial was conducted in a large
of WASP is not affected by the input signal level as long as it 5" s ring facility building with metal cladding. @h
is above -85 dBm.When the input signal is above this level P 9 Y g 9-

. , . . {room is used for performance monitoring of athletes and
there exists a noise floor of nearly 7 cm. This floor is due g~ . ) .
consisted of several apparatuses with metal structuresla®i

other sources of error that are independent of the inpuisign . . . .
. ) . . .. ~to the outdoor trial nine anchors and five static nodes were
level, including noise in the baseband electronics, qaatitin :
o S . used with the same TDMA frame structure. The anchors were
noise in the converters, and phase noise in the oscillator. laced rouahlv in a circle of radius 10 m. and five nodes were
2) Outdoor Trial - Soccer Field:n this trial nine anchors P gty '

were placed on the peribherv of the soccer field and five nod%!aced inside the circle in a straight line at 1 m separation.
P perphery The range error distribution is shown in Fig. 10. The

were placed on the centerline. The true positions of thecm:f.chHiestribution shows a positive bias in the errors. This iath

and the nodes were obtained through a field survey with t multipath condition inside the laboratory. Of all the remg

center of the soccer field as the origin. In this trial the TDMA
. . . __"errors 82% are less than 0.5 m.
frame consisted of 20 time slots each having a duration of

4 ms. In every frame each anchor transmits once and each nod@ Indoqr NLO.S Tnal: This t“‘.”" was conducted inside a
regular office building. The building layout and the node

2An RF input signal level of -85 dBm corresponds to a range afrlye Ioca_'uons are shown in Fig. 11. The internal walls consistied
200 m for our system in free space. a mix of plasterboard, reinforced concrete, metal framed, a
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TABLE Il
RMS LOCALIZATION ERROR(CM) — STATIC SCENARIO
10} | L L |
Trial LS RLS | POCS| KF UKF | IMM/UKF
S S W [ S [ RLS] POCS| KF_] UKF ]
st _'—’ - | | Outdoor 12.1 | 12.0 19.7 11.23 | 11.9 11.9
w LLLL Y Indoor LoS | 21.2 | 163 | 241 | 140 | 181 | 17.9
- i
[ [ 11 |’- - ‘| | Indoor NLoS | 89.1 | 68.8 | 61.0 | 66.2 | 74.1 65.8
~ 0r .
I [ ]
ol [ Sy P R R
-5t . 1 [ | 10° ; ‘ :
- - . - =-=RLS
— 2T T — S e RLS-KF
-1or * —— UKF
A}
107tk N ‘== IMM-UKF|]
A
~
-15 : : : : : ; SN
-10 -5 0 5 10 15 20 N
xm é 10 : .\\ \\
O \ i S
Fig. 11. Node placement in the indoor NLoS trial. Anchors @eeoted by E Shoon
¢ and node locations by. “\
10} A TTTT \
0.025
10"

0 0.5 1 15 2

0.02} B Absolute error (m)
§ Fig. 13. Complementary cumulative distribution functidirelative location
2 0.015¢ ] error in the dynamic trial.
[
i
3]
>
£ oo01f
ko)
14

separation. Using the estimated locations of the two ndtles,
separation error was calculated.

1) Static Trials: Table 1l shows the root mean square

L (RMS) localization error performance obtained using défe
L T TS 15 localization algorithms. The POCS algorithm only penalize

Error (m) range measurements that are less than the estimated range.
Hence, in NLoS environments, where biased range measure-
ments are expected, the POCS algorithm is seen to perform
the best. The results also show that compared to the standard
LS algorithm the proposed RLS algorithm reduces the RMS
glass. In this trial nine WASP nodes were placed at survey@gor by 20.3 cm, because it effectively removes the outlier
locations and assumed as the anchor nodes. Another node W&gsurements. The IMM estimator performs better compared
placed at various locations throughout the building as shoiP the UKF in NLoS environments because it better captures
in the figure and was localized. At each location of the nodBe varying noise characteristics through the use of mialtip
several ranging measurements were obtained. From thetlay®§gasurement models.
it is easy to see that for most pairs of nodes the LoS path isln the outdoor data, ranging errors are dominated by system
blocked by the walls and partitions inside the building. noise and there is no significant bias present. In this case

The range error distribution for this case is shown in Fig. 1#he LS techniques, which use a quadratic penalty function,
Observe from the figure that there is a considerable prababilPerforms much better than the POCS algorithm. In the indoor
mass away from the main cluster. In this trial only 65% of the0S case, multipath reflections, although not as severe as in
ranging errors are less than 0.5 m. the NLOS case, still causes large outliers. Again the adwegnt
of using the new RLS algorithm over standard LS algorithm
can be clearly seen, nearly 23% reduction in RMS location
error.

The localization performance of WASP was evaluated in 2) Dynamic Trial: We conducted a dynamic trial in which
both static and dynamic scenarios. As we had no indepeneyclist was tracked in a velodrome. Two nodes were fixed
dent system for high accuracy tracking of nodes, evaluatitmthe bicycle at a separation of 0.7 m and nine anchors were
of location error was only possible by using the surveyesktup around the velodrome track. Using the range measure-
locations of static nodes. For this the measurements ¢tetlecments obtained at these nine anchors each node is tracked
in Sections VI-A2, VI-A3, and VI-A4 were used. In a dynamidndependently using the two tracking approaches congidere
scenario, however, only the evaluation of relative locagoror The complementary cumulative distribution of the separati
is possible, where two nodes are constrained to have a fixardor, i.e., the difference between the true and the cakedla

0.0051

Fig. 12. Range error distribution between anchors and thdesian the
indoor NLoS trial.

B. Localization Performance
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TABLE Il
PERFORMANCE COMPARISON WITH OTHER SYSTEMS4- - MEAN RANGING ERROR, i - MEAN LOCATION
ERROR AND P - PROBABILITY OF RANGING ERROR

. BW (MHz) Performance
Ref. | Environment
Ref. | WASP | Ref. | wAsP
[9] Steel and LoS 500 | 125 e =66 cm ur =38 cm
[9] Sheet rock/aluminum stud, NLo$ 500 | 125 ur =91 cm ur =48 cm
[4] @ | Several buildings, NLoS 100 | 125 60%, P. <3 m | 65%,P. <05m
[11 ® | Wood building, NLoS 150 | 125 tp = 0.49 m 0.49 m
[25] | Office building, NLoS 40 125 RMSE = 1.23 m| RMSE =0.61 m

aThe results presented in [4] were based on measurementxtedll at three different sites, which are
made of different materials. The corresponding figure priesefor WASP is based on the setup described in
Section VI-A4.

PThe measurements are obtained using a system similar to V{ifitences between the two are described
in Section Il). The corresponding performance measureeguéitr WASP is the median error. But this was
obtained in an office building with multiple walls and not afl them are made of wood.

separation, is shown in Fig. 13. performance across a number of applications. The system was
It can be seen from the figure that nearly all the probabilityesigned to permit rapid setup and to provide high accuracy
mass of the separation error is less than 0.5 m for bdttalization using low-cost hardware, as well as providiigh
the direct fusion algorithms. RLS denotes the localizatioiate data communications. The hardware was designed to be
performance obtained using the proposed robust LS algoritlsmall and low-power, yet with sufficient processing capghbil
before applying any filtering. When a KF is applied on theo be used for both wireless sensor network (WSN) research
localized data, the separation error obtained, shown by thed application trials. The sophisticated signal processi
RLS-KF curve in the figure, reduces significantly and ialgorithms that form part of the system overcome many of
comparable to that obtained using the direct fusion approathe hardware limitations including lack of time and fregogn
synchronization between nodes, varying propagation delay
C. Comparison to Existing Systems through the node electronics, and bandwidth limitationthef

While most publications in this field report simulatiorJOW'COSt RF electronics. New algorithms were presented for

results, there are some groups that have performed and srléger—resolution measurement of TOA and for localization i

ported measurements using real systems. In this section l\7\?@S and NLoS enw_ronments. ) ) _
compare our results with some of those previously reported_WASP has been field tested in a variety of scenarios and the

In all cases we use our data set that most closely matchgSultS show that WASP can achieve ranging error less than
their measurement environment. The results are summarizeg? M outdoors. In indoor environments where LOOS IS present
in Table I1l. When interpreting the results, one should tak¢/ASP achieves better than 0.5 m accuracy 85% of the time

into consideration that neither the radio parameters ner tﬂnd in NLOS_ environments the same error figure is achie_ved
environmental conditions were the same. 65% of the time. The RMS localization error of WASP varies

The first three results in Table Il evaluate the ranginom 0-11 m to 0.61 m across these environments.

accuracy and in all three cases expensive laboratory equipjl'rials to date have included tracking elite athletes in @ean

ment such as network analyzers is used to perform rangiff§ SPOrts and tracking vehicles in mines. In these appbeati
Therefore they do not have the additional issues such as tifgg2/ization is based on ranging between each mobile node
and frequency synchronization that we encounter in using lo2nd multiple anchor nodes. WASP hardware and protocols are
cost wirelessly connected nodes, nonetheless our reselts aJso suitable for cooperative localization in which the o$e

generally better. Further, compared to [9] we have only oik@nge measurements between mobile nodes permits tracking
quarter the bandwidth available for ranging. of nodes that are not within the radio communication range

The last two comparisons are of localization error. In bofff thrée or more anchors. We are undertaking research into
[1] and [25] the performance of these systems and our systSgppPerative localization, particularly to reduce the nemb
are similar, taking into account the radio bandwidth a#ta ©f @nchor nodes required in large networks. We are also

As mentioned before, compared to [1] WASP has the advdfpdertaking continuing research to improve the perforraanc

tage that it uses a single radio for both positioning and ddth the TOA estimation, localization, and tracking algonit

communication, reducing the cost and power consumptidifToSs & wide range of applications.
[25] uses Data ExacTime GPS and rubidium-based oscillators

to time synchronize the nodes, which are neither small nor ACKNOWLEDGMENT
low-cost. We would like to thank the members of the WASP de-
velopment team, A. Kajan, P. Ho, M. Johnson, A. Grancea,
VII. CONCLUSIONS J. Pathikulangara, and R. Liu. Without their technical con-

In this paper we presented a localization system that wrbutions and commitment the system would not have been
have developed called WASP, and field trials to validate ifgossible. Also we would like to thank the Australian Ingttu
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