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Abstract—In this paper we present a low-cost wireless sensor
network (WSN) platform, called Wireless Ad hoc System for
Positioning (WASP), that has been developed for high accuracy
localization and tracking. This platform uses the time of arrival
(TOA) of beacon signals periodically transmitted by the nodes at
known times for localization. The system was designed to have
a unique tradeoff between hardware complexity and processing
complexity to provide high accuracy at minimal cost in complex
radio propagation environments. To enable the system to perform
well in realistic environments it was also necessary to develop
novel extensions to existing algorithms for the measurement of
TOA, localization, and tracking. In this paper we describe the
architecture, hardware, and algorithms of WASP and presentre-
sults based on field trials conducted in different radio propagation
environments. The results show that WASP achieves a ranging
accuracy of 0.15 m outdoors and 0.5 m indoors when around
twelve anchor nodes are used. These accuracies are achieved
with operating range of up to 200 m outdoors and 30 m indoors.
This compares favorably to other published results for systems
operating in realistic environments.

Index Terms—Wireless sensor networks, radio localization and
tracking, time of arrival, two-way ranging, multipath, ind oor
propagation, least squares estimation.

I. I NTRODUCTION

Wireless sensor networks (WSN), consisting of small, low-
cost, and self-organizing nodes that are suitable for rapidde-
ployment promise a wide range of applications such as habitat
monitoring, assisting emergency first responders, automation
and safety in the mining industry, and performance monitoring
of athletes. For many WSN applications localization, i.e.,the
determination of the spatial coordinates, of the nodes is an
important requirement [24].

Existing localization technologies such as the well-known
Global Positioning System (GPS) [13] can be used for some
WSN applications but for many others suitable technology
does not exist or is too expensive. For example, GPS generally
does not work indoors or underground, and performs poorly
in urban canyons. Even in clear outdoor environments the
accuracy provided by low-cost GPS receivers (of the order
of several of meters) is not adequate for applications such as
tracking athletes for performance monitoring.

Several research groups [1], [2], [21], [25], [27] have been
working to develop a high accuracy terrestrial localization
systems (an extensive list of publications in this area can be
found in [19]) using different technologies, although noneare
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ready for widespread commercial deployment. As explained
in the next section the technology that is most appropriate
for terrestrial localization is the time of arrival (TOA) based
ranging.

We have developed a WSN platform that we call WASP
(Wireless Ad-hoc System for Positioning) that provides accu-
rate TOA-based localization, in addition to wireless commu-
nication, using low-cost electronics. In this paper we describe
the WASP architecture and the signal processing algorithms,
including some novel extensions to existing techniques. A
novel TOA estimation algorithm was developed that uses
a band-stitching approach to obtain a broadband channel
impulse response (CIR) using narrower band electronics. This
enables lower cost electronics to be used compared to direct
measurement of a broadband CIR. The TOA is computed from
the CIR and the algorithm that we have developed [14] is
shown to have lower computational complexity compared to
other super-resolution algorithms described in the literature.
From the TOA the range between node pairs is computed.
We also present a novel robust least squares (RLS) local-
ization algorithm that effectively removes outlier range mea-
surements commonly encountered in multipath propagation
environments.

The WASP platform has been extensively field tested in a
range of radio environments and applications including sports,
public safety, and mining with support from government and
commercial organizations. This paper presents results from
some of the field trials. The results show that WASP provides
accurate ranging and localization performance in both indoor
and outdoor environments and these results compare favorably
with other systems for which published results of evaluations
in realistic environments are available.

The rest of this paper is organized as follows. In Section II
we describe the challenges faced in developing a low-cost
TOA-localization platform, and highlight some existing sys-
tems and their limitations. Section III presents the WASP
architecture and algorithms that constitute the signal level
processing such as TOA estimation and ranging. In Section V
the localization and tracking algorithms studied for implemen-
tation in the WASP platform are explained. Section VI presents
the performance of the system using data collected in field
trials. Concluding remarks are given in Section VII.

II. W IRELESS LOCALIZATION: CHALLENGES AND

EXISTING SYSTEMS

There are many potential applications for localization and
tracking of the nodes in WSNs that are not supported by
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current technology. One example is tracking public safety
officials such as fire fighters undertaking a mission inside
a building. A localization system for this application must
provide high accuracy (of the order of one meter) in a
wide range of indoor radio propagation environments and be
suitable for rapid deployment, yet be small and low cost. These
are a challenging set of requirements not fully addressed by
any commercial system to date, and a system overcoming these
challenges will find use in many other applications including
military and mining.

Operation in a wide range of indoor environments requires
that the system is robust to fading and severe multipath signals.
Unfortunately localization relies on the measurement of direct
path distances, so multipath is a problem and cannot be
exploited as in communications. Rapid deployment requires
that the system does not require prior knowledge of the
building, such as maps, or environmental information such as
signal strength surveys. It is also not feasible to install any
cabled infrastructure in such situations, so all hardware must
communicate wirelessly.

There are a number of technologies that are not suitable
for this application. Systems using ultrasound (such as the
ORL ultrasonic system [37], Cricket [27], and Medusa [32]) or
infra-red cannot be used as these signals do not travel through
walls. GPS cannot be used as it is generally unavailable
indoors. There are other systems that use existing terrestrial
infrastructure such as cellular and broadcast television signals,
however, their accuracy is typically many tens to hundreds of
meters, which is insufficient for this application. A common
approach for indoor localization is to use received signal
strength (RSS) fingerprints from access points or other in-
stalled infrastructure [2], [25], [38]. RSS-based localization is
not suitable for rapid deployment as the signal strength survey
is slow and requires access to the entire area. Systems based
on the measurement of angle of arrival are large (containing
steerable antennas or antenna arrays) and provide poor accu-
racy in multipath environments as the strongest signals are
often not the direct signals. This leaves systems based on the
measurement of time-of-arrival (TOA) as most suitable for our
applications.

There are a number of challenges in obtaining high local-
ization accuracy using TOA-based systems. The key challenge
is to measure the TOA to an accuracy of the order of
one nanosecond using low-cost hardware in difficult radio
environments. Another challenge is the time and frequency
difference between the local clocks in different nodes. While
the use of a cabled infrastructure between anchors – as is used
in a number of systems (e.g., Inmotio [16]) – would easily
eliminate the synchronization problem, such a system is not
feasible for rapid deployment.

Further, the propagation delay through the electronics must
be known so that the range is computed from the propagation
through the air only. The propagation delay in the electronics,
however, varies with parameter settings and temperature. Fig. 1
shows the variation of the propagation delay in a WASP node
for different settings of the variable gain amplifier (VGA) on
the receiver. It can be seen from the figure that for some VGA
settings the excess propagation delay in the hardware is over
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Fig. 1. Variable propagation delay in low-cost hardware as afunction of
receiver gain.

10 ns, which translates to a ranging error as high as 3 m, if
not corrected.

There are few current systems that use TOA for high
accuracy ranging and localization. Systems based on UWB
[5], [34] have the advantage of high bandwidth, but the low
power severely restricts the range of operation and UWB is
not yet legal in many jurisdictions outside the USA. The
Precision Personnel Locator (PPL) [1] is a research system
that seeks to address the specific needs of fire fighters. The
PPL is not robust to severe multipath interference and requires
two radio subsystems – one for localization and one for data
communications – which increases the size, cost, and power
consumption. Further, the algorithm used for localizationis
computationally intensive. Another system addressing similar
requirements is presented in [20]. This system overcomes
the problem of variable node propagation using a loopback
measurement within each node, which is not possible with
low-cost radio devices. Further, the results presented in [20]
are based on simulations and measurements obtained using
precision laboratory equipment; hence, they do not reflect the
issues encountered in multipath environments and the use of
low-cost hardware.

III. WASP SYSTEM OVERVIEW

A WASP network consists of a number of WASP nodes.
Some of these nodes, called anchor nodes, are at known fixed
locations, and the rest of the nodes, called mobile nodes,
are localized with respect to the anchor node locations. The
anchor node locations can be determined using building plans
or conventional surveying techniques. For a WASP network
that extends outdoors from a building GPS can be used to
locate outdoor anchor nodes and WASP can track indoor nodes
where GPS is not available.

In typical applications of our system, such as tracking
athletes or fire fighters, the anchor nodes surround the area
to be monitored and the measured TOA is used to determine
range between the mobile and anchor nodes. The mobile nodes
are localized and tracked using the measured ranges to the
anchors.
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Fig. 2. Node Hardware Architecture.

While the minimum number of anchor nodes for two-
dimensional localization is three, we typically deploy between
eight and twelve anchor nodes to improve accuracy and to
allow for the fact that not all mobiles will be in radio range of
all the anchor nodes. Since there is no distinction between the
WASP nodes used as mobiles and anchors, a WASP network is
also suitable for cooperative localization [24] in which range
measurements between mobile nodes permit tracking of mo-
bile nodes that are not within the radio communication range
of anchor nodes. While we have undertaken initial research
into cooperative localization [31] it has not been requiredfor
our applications to date and is not further commented upon in
this paper.

A. Radio Spectrum Selection

In WASP we use TOA measurements for ranging. TOA can
be determined either by measuring the phase of the received
narrowband carrier signal or by measuring directly the arrival
time of a narrow wideband pulse [22]. Although the former
approach, which is used in real-time kinematic GPS, can give
accurate ranging performance outdoors, its performance in-
doors or in the presence of multipath is significantly degraded.
In WASP we use the latter approach.

The accuracy of the TOA measurements, and hence the
range, depend upon the bandwidth of the transmitted signal.
The standard deviation of the ranging error between a pair of
nodes is inversely proportional to the bandwidth of the signal
[10]. We found that in typical office buildings a bandwidth of
100 MHz is required to obtain a ranging accuracy of the order
of a meter. This observation is consistent with measurements
made by other researchers [9].

Due to the prohibitively high cost associated with the use
of the licensed spectrum, most of the applications of interest
restrict us to use the unlicensed spectrum. We further restrict
the operating frequency to be below 10 GHz so that we
can use low-cost radio electronics and have reasonable ra-
dio propagation through building materials. These restrictions
leave us with only the 2.4 GHz and 5.8 GHz ISM (industrial

scientific and medical) frequency bands, which are available
internationally and have bandwidths of 83 MHz and 125 MHz
respectively. The WASP hardware was built to work in both
bands, however, trials to date have used the 5.8 GHz band
due to greater bandwidth and less interference from wireless
networks.

B. WASP Hardware

The WASP hardware was designed to provide the flexibility
and capability to be used as a platform for WSN and localiza-
tion research, yet also be sufficiently small and low power for
field trials. The former was achieved by incorporating much
of the functionality in software and firmware, i.e., WASP is a
software defined radio system [7].

To design a system that is compact and low-cost we decided
to use a highly integrated commodity integrated circuit (IC)
for the radio frequency (RF) subsystem. Since no such RF IC
existed in the mass market that would provide a bandwidth
of up to 125 MHz, we selected a WLAN (wireless local area
network) RF IC designed for 802.11 family of protocols. This
RF IC, however, does not cover the entire 125 MHz band-
width, and in our design to utilize the entire bandwidth, the
frequency band is divided into eight overlapping subchannels.
The division of the bandwidth into subchannels is controlled
by software rather than a fixed division in the hardware. The
transmitter frequency hops between the subchannels and the
receiver stitches the received signals in different subchannels.

An advantage of the narrower band subchannels is the
lower sampling rates for the conversion between analog and
digital signals, allowing us to use low-cost and low-power
components. The disadvantage is that there is increased signal
processing complexity at the receiver to stitch together the
eight subchannels to reconstruct the full bandwidth signal. The
power and cost increase in the digital processing electronics
is more than made up for by the reductions in the radio and
converter electronics. An example of the processing required
for band-stitching is presented in [30].
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Fig. 3. Two versions of the WASP node.

Fig. 2 shows a block diagram of our hardware architecture.
Most of the radio functions are performed by the Maxim
MAX2829 RF IC including conversion between baseband
and radio frequency and frequency synthesis. The digital
processing is performed by a field programmable gate array
(FPGA) for low level processing and a digital signal processor
(DSP) for high level processing. A detailed description of the
WASP hardware can be found in [10].

Two versions of the WASP hardware are shown in Fig. 3.
Both implement the block diagram shown in Fig. 2 and
have the same functionality. The larger node, however, has
increased connectivity options and a larger battery. The power
consumption of the hardware is 2 W while receiving and
2.5 W while transmitting. In high update rate applications
such as tracking athletes the battery life between charges
is approximately 10 hours and 2.5 hours for the large and
small nodes respectively. In low update rate applications active
power management can be employed to greatly extend the
battery lifetime.

C. Wireless Protocol

Each WASP node periodically transmits a beacon that
contains data for network configuration, may contain a user
payload, and is used for tracking by measuring the TOA of re-
ceived beacons. For temporally uniform tracking and accurate
measurement of the TOA, the beacons should be regular and
contention free and to facilitate this a time division multiple
access (TDMA) medium access control (MAC) protocol is
used. Time is divided into slots and each node is allowed
to transmit in one of the slots. A group of slots is called a
superframe, which is a periodically repeating structure.

For tracking athletes we typically use 2.5 ms slots and
40 slots in a superframe of duration 100 ms, providing ten
location updates per second for every node. In our system
the slot duration and the number of slots in a superframe
are configurable and hence, we can make trade offs between
the number of active nodes, location update rate, and power
consumption to suit each application. As slots are used for
anchor nodes and mobile nodes alike, the maximum number of

mobile nodes that can be simultaneously tracked is the number
of slots in a superframe less the number of anchor nodes.

The MAC provides a distributed mechanism for the alloca-
tion of slots to nodes and enables slot reuse for nodes with
sufficient separation to be non-interfering. Each node has one
slot reserved in each superframe for its beacon, and can also
negotiate additional reserved slots for data. Nodes can also
send data using a contention access mechanism in unreserved
slots. Data packets are transmitted using a single subchannel
and beacon packets are data packets that also include a
signal designed to enable high accuracy TOA measurement
at receivers. This TOA signal includes transmissions on all
of the subchannels transmitted sequentially from the lowest
subchannel.

The physical layer is similar to that used in 802.11a/g.
We use 15 MHz of bandwidth, orthogonal frequency division
multiplexing modulation, convolutional encoding, and Viterbi
decoding. To ensure high reliability we have used binary phase
shift keying and quadrature phase shift keying constellations
for data rates of 4 and 8 Mbits/s. The TOA signal consists
of identical noise like signals with good correlation properties
and 18 MHz bandwidth on each of the subchannels. Each of
these has a duration of 41µs and there is an idle period of
20 µs between transmission on each subchannel to allow the
frequency synthesizer to settle to the next carrier frequency.

IV. WASP ALGORITHMS

In each superframe each node transmits a beacon in a
specified slot and all nodes measure the TOA of received
beacons. The set of beacon transmit and receive times for a
superframe is processed to determine the location of mobile
nodes. The processing stages consist of performing band-
stitching to reconstruct the broadband CIR between each
connected pair of nodes, performing super-resolution TOA
estimation from the CIR, determining the range between each
pair of nodes, and finally performing localization and tracking
of the mobile nodes using the measured ranges. Algorithms
for TOA and range estimation are described in this section
and that for localization and tracking in the following section.

A. TOA Measurement

The bandwidth available to any system is limited by regu-
latory and hardware restrictions, and this in turn restricts the
achievable ranging accuracy of the TOA-based systems. This
has prompted several researchers to propose super-resolution
TOA measurement techniques that are inspired by similar
techniques available for high resolution spectral estimation.

To better understand the similarity between the super-
resolution TOA estimation and spectral estimation, consider
the multipath channel model

h(t) =
L−1

∑
l=0

alδ(t − τl), (1)

whereh(t) is the CIR,L is the number of significant multi-
paths, andal andτl are, respectively, the complex amplitude
and time delay of thelth path.δ(.) denotes the Dirac delta
function.
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Fig. 4. CIR in an outdoor environment showing no significant multipath
condition.

We can obtain the equivalent channel frequency response
H(f) by taking the Fourier transform ofh(t). Therefore
H(f) is given by

H(f) =
L−1

∑
l=0

al exp (−2πτlf). (2)

where denotes the imaginary unit, i.e., = √−1.
If the frequency and time variables in (2) are interchanged,

we obtain the classical harmonic signal model. This suggests
that the examination of the spectral contents ofH(f) will give
the multipath amplitudes and delays. It then becomes possible
to apply the well-known high-resolution spectral estimation
techniques to estimate the TOA.

One of the popular high-resolution spectral estimation tech-
niques ESPRIT (estimation of signal parameters via rotational
invariance technique) [26] is used to estimate the TOA in
[29]. Variations of the MUSIC (multiple signal classification)
algorithm are proposed for TOA estimation in [8] and [18]. In
[6], a technique based on the matrix pencil method is proposed.
Using simulated channel data the performance of the super-
resolution TOA algorithms is compared in [39].

Using the above mentioned super-resolution algorithms is
not practical in our system. Even a modest update rate of
2 Hz in a network with 20 nodes requires each node to
calculate 40 TOAs per second, i.e., 25 ms per TOA estimation.
In sporting applications, higher update rates reduce this to
just a few milliseconds per TOA calculation. The super-
resolution algorithms mentioned above require the calculation
of eigenvalues or inverses of matrices [O(M3) complexity for
M×M matrices] with sizes on the order of 100×100 or bigger.

The standard way of determining the TOA, as used in GPS
for example, is to estimate the CIR by correlating the received
signal against the transmitted signal. An equivalent method to
determine the CIR is to multiplyH(f) by a window function
and then take the inverse Fourier transform. Sample impulse
responses measured by our system are shown in Fig. 4 and
Fig. 5. Fig. 4 was measured outdoors and shows a clear main
peak corresponding to the direct path. Fig. 5 was measured
indoors and shows strong multipath propagation.
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Fig. 5. CIR in an indoor environment showing significant multipath
condition.

Given the CIR there are numerous ways in which the TOA
may be chosen and the exact method has a significant impact
on the performance of the system. For the outdoor case the
peak of the impulse response is a good choice as in Fig. 4.
In indoor or multipath environments such a technique does
not work since the strongest peak cannot be used. In this
case the direct path may have a lower signal strength than a
reflected path. Further, there can be multiple reflected signals
overlapping with the direct path signal resulting in the first
peak of the combined signal being delayed relative to the peak
of the direct path signal. Using a 125 MHz bandwidth signal
the pulse width is 16 ns between nulls, and hence, to obtain the
desired nanosecond level accuracy a super-resolution approach
must be used to find the TOA of the direct path signal.

In our implementation, we choose the TOA as a (small)
fixed fraction (-18 dB) of the height of the first peak in
the impulse response. This value has been chosen as small
as possible while still being reliably above the noise level.
As seen in Fig. 8 the noise level is quite constant with
respect to the received power level, so an adaptive threshold
in not required. By fixing the fraction, the TOA estimate is
independent of the amplitude of the first peak, and thus gives
good results in the case where the line of sight (LoS) path is
the dominant path. By making the fraction as small as possible,
this method also has a reasonable chance of picking up the
LoS signals that are hidden by more powerful later arriving
signals, although the accuracy is reduced.

In our experience, using actual measured data in indoor
environments, the performance of the algorithm used in WASP
is as good or better than the performance of the MUSIC
and ESPRIT super-resolution algorithms, while being vastly
simpler to implement [the most complex operation is an FFT
with complexity orderO(Mlog(M))]. This contrasts sharply
with the simulation only studies of [6], [8], [29] and [39]. It
is, however, in line with the results obtained using measured
data in [22]. For example, Figures 7 and 9 in [22] show
only marginal differences between the results for the MUSIC
algorithm and the correlation-based approach. The simulation
only studies either use an unrealistically simple channel model,
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or use channel models designed for communications which
effectively limit the number of paths to the number of degrees
of freedom required to represent the channel given the channel
bandwidth and the delay spread. These models fail to capture
the true range of possible TOAs given a particular CIR. See
[14], [15] for a detailed discussion on this point.

We have also investigated a template matching approach
based on the shape of the leading edge, which effectively
gives a variable threshold. Details of this template matching
algorithm along with comparison results can be found in [15].

B. Range Estimation

TOA ranging can use either a one-way or two-way ex-
change of signals between a pair of nodes. One-way ranging
requires synchronization of the clocks of all the anchors and is
generally used to estimate pseudo-range, requiring the useof
a time difference of arrival (TDOA) localization algorithm.
Synchronization errors and the poorer accuracy of TDOA
localization algorithms compared to TOA algorithms resultin
one-way ranging having lower accuracy than two-way ranging,
so we focus on the use of two-way ranging.

In two-way ranging, which is also called round-trip ranging
[20], as shown in Fig. 6, node A transmits a wideband pulse
to node B. After a small delay ofτAB, node B returns a
pulse back to node A. In this figureti, i = 1,2,3,4 denote
the absolute times in an unknown time frame common to
both nodes. The times shown within brackets denote the
corresponding times with respect to the local clocks. The
absolute and local times for noden are related by

tni = αn(ti − t0,n), (3)

whereαn andt0,n are the frequency and time offsets of node
n, respectively.

Note thattA1 andtB3 are the transmission times at nodesA

andB, and are known precisely.tA
4

and tB
2

are the received
times at these nodes and are measured by the respective
nodes using the super-resolution technique presented in Sec-
tion IV-A. Knowing these times allows us to calculate the
time of flight and the procedure used in WASP is explained in
detail in [11]. The procedure corrects for a constant frequency
offset between the local clocks in the node pair, and constant
relative motion between the node pair. The corrected range
between anchor and mobile nodes is determined at the time
at which the mobile node transmits. This is done so that in
the subsequent localization calculation all ranges between a
particular mobile node and the anchor nodes are computed at
a common time. Therefore the location of the mobile node is
computed at the time at which it transmitted its beacon.

In much of the literature it is assumed that a two-way
measurement is between a particular node pair with little delay
between the initial beacon and the response, i.e.,τAB ≈ 0. For
a fully connected network of N nodes there areN2/2 node
pairs requiring a total ofN2 transmissions to measure the two-
way ranges between all pairs of nodes. In WASP each node
only transmits once for a total ofN transmissions. The re-
duction in the number of transmissions leads to a more power
efficient and higher location update rate system. The downside

Node A Node B

t1(tA1 )
t2(tB2 )

t3(tB3 )
t4(tA4 )

τAB

Fig. 6. The two-way range between a pair of nodesA andB is measured
using an exchange of signals between each nodes.

is the substantial time delay between the two beacons of a node
pair and the processing algorithms must allow for factors such
as node motion and node clock frequency differences in this
interval.

V. L OCALIZATION AND TRACKING ALGORITHMS

It is necessary to consider different techniques for local-
ization in indoor and outdoor environments because of the
varying propagation conditions of these environments. We
compare three localization algorithms including a new robust
least squares (RLS) technique that we have developed. The
robust technique removes the outlier range measurements
effectively and compared to the standard LS technique gives
improved localization accuracy.

The positioning accuracy can be further improved by track-
ing the node. Tracking also allows the estimation of kinematic
parameters such as velocity and acceleration. In this paper
we consider two tracking approaches. In the first approach
the positions obtained in the localization step are used in a
Kalman filtering framework to track the nodes. In the second
approach the localization step is removed altogether and the
range measurements are fused directly using a nonlinear filter.

A. Localization Algorithms

We compared three localization algorithms: the standard LS,
the new RLS, and the projection onto convex sets (POCS). In
this section we provide a brief description of the standard LS
and POCS algorithms and the details of the RLS algorithm.

1) Least Squares Algorithm:Assume that the measured
range between unknown node and the anchori is given by

ri =∥ θ − θi ∥ +wi i = 1,2, . . . ,N (4)

whereN is the number of anchors in the network,θ = [x, y]T
is the unknown location of the node, andθi = [xi, yi]T
is the known location of theith anchors.wi is the range
measurement noise, which is assumed to have a zero mean
andσ2

i variance and∥ . ∥ denotes the two-norm.
The well-known LS technique minimizes the sum of the

square of the difference between the measured and estimated
ranges or in other words the range noise power [19]. The LS
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estimate of the unknown node locationθ = [x, y]T is then
given by

θ̂LS = argmin
θ

N

∑
i=1

(ri− ∥ θ − θi ∥)2 (5)

The minimization problem in (5) is nonlinear and a closed
form solution is not available. It can be solved using any gra-
dient descent techniques. In this paper we used the iterative LS
algorithm, which is based on a Taylor series expansion of the
objective function [3]. The gradient descent type algorithms
require a starting point close to the actual solution. Otherwise,
they may converge to a local minima or may not converge at
all. For localization using ranging, an initial solution can be
easily obtained using a linear approximation as explained in
[33]. If the node is being tracked the prior track information
can be used as well.

2) Robust Least Squares (RLS) Algorithm:The standard
LS algorithm just described uses all the range measurements
irrespective of their quality.1 In this paper we propose a robust
algorithm that tries to remove outlier measurements through
an iterative process.

In the RLS algorithm, first we compute the node location
using the LS technique and the corresponding positioning
error [see (6)] based on all theN range measurements.
Then we remove each measurement in turn, and recompute
the node position and the corresponding positioning error.
The measurement, which when removed gives the smallest
positioning error, is identified and after applying a small bias
towards using more measurements, if the positioning error
is still smaller, the removed measurement is considered an
outlier and eliminated from further consideration. This process
is repeated until an acceptable positioning error is obtained.

The positioning error is calculated as the product of the
geometric dilution of precision (GDOP) and the ranging error.
That is

e = GDOP

¿ÁÁÁÀ N

∑
i=1

(ri− ∥ θ̂LS − θi ∥)2
N − 2 . (6)

In the above GDOP= √trace(AA′)−1, where ′ denotes the
matrix transpose and the matrixA is given by

A = [ x−x1

∥θ−θ1∥
x−x2

∥θ−θ2∥
⋯ x−xN

∥θ−θN∥
y−y1

∥θ−θ1∥
y−y2

∥θ−θ2∥
⋯ y−yN

∥θ−θN∥

] . (7)

Calculation of the positioning errore is based on the simpli-
fying assumption that the noise in the range measurements is
independent and Gaussian distributed, which while not strictly
true was found to work well with real data. A pseudo-code
description of the RLS algorithm is presented in Table I.

The selection of the optimal biasκ is dependent upon
the statistics of the range errors, however, we have found in
practice that a wide range of values provide acceptable perfor-
mance. Fig. 7 shows this using real data collected by WASP
in a velodrome, where the LoS measurements are available

1A weighted LS algorithm can be envisaged to incorporate measurement
quality. If the measurement noise is Gaussian distributed,then the optimal
weights are the inverse of the measurement noise variances.Finding the
optimal weights for other distributions, however, may not be feasible.

TABLE I
THE ROBUST LEAST SQUARES(RLS) ALGORITHM

Calculate node locationθN using NLS algorithm fromN measurements
Calculate corresponding location erroreN using (6)
repeat

for all anchori ∈ N do
Removeri from the measurement set
Calculate node locationθN/i
Calculate corresponding location erroreN/i
Store (i,θN/i, eN/i)

end for
if mini κeN/i < eN , {κ is the bias} then

Removeri from the measurement set
SetN = N − 1
SetθN = θN/i
SeteN =mini eN/i

else
break

end if
until eN/i ≤ a given threshold
return θN

Note: In the aboveN/i denotes all indexes from1 to N except i, i.e.,
1,2, . . . , i − 1, i + 1, . . . ,N .
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Fig. 7. Complementary cumulative distribution function for position error
using velodrome data. In all cases, except standard LS, RLS was used for
positioning withκ given in the legend. C, the number of range measurements
in each data set artificially corrupted to create outliers, is zero unless stated
otherwise in the legend.

but severe multipath is present due to the metal structures
and building enclosure. Multiple measurements were made at
each of the 15 surveyed locations, for a total of 6077 sets
of measurements for localization, where each set contains the
range to at most nine anchors. It is seen that whileκ =1.2
provides the lowest error, values between 1.0 and 1.5 provide
satisfactory performance, which is significantly better than the
standard LS technique.

To further demonstrate the performance of our robust al-
gorithm using the same data we corrupted one or two range
measurements in each set by adding a uniformly distributed
random noise in the range [-10,10] m. The results are also
shown in Fig. 7 and these cases are denoted in the legend by
C = 1 and C= 2 for one and two large outliers, respectively. It
is seen that with one range outlier there is little additional error,
and that even with two outliers nearly 95% of the position
values have little additional error. The LS technique failed to
converge for all measurement sets even with a single outlier.
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These results show the substantial improvement that can be
obtained using our RLS algorithm.

3) Projection onto Convex Sets (POCS) Algorithm:The
POCS algorithm was proposed for localization in [12]. Unlike
the LS technique where the error between measured and
estimated range is penalized quadratically, the POCS algorithm
applies a penalty only when the estimated range is greater
than the measured range. As a result this algorithm can
provide better results when the range measurements have large
positive biases, which typically is the case in strong multipath
environments.

In the POCS algorithm, each range measurement is used to
form a convex constraint on the unknown node position. With
range measurements the convex set is defined by

Di = {θ ∈ R2 ; ∥ θ − θi ∥ ≤ ri} , i = 1,2,⋯,N. (8)

This effectively transforms the localization problem intoa
convex feasibility problem [12]. That is

θ̂POCS =
N

⋂
i=1

Di ∈ R2. (9)

Starting from a random initial point, for each constraint, if
the constraint is not satisfied the point is updated by projecting
it onto the convex set defined by that constraint. Given that
the intersection set is non-empty, this process is guaranteed
to converge to a feasible point [12]. In our implementation of
the POCS algorithm, we used a number of different starting
points and the algorithm is allowed to run for a fixed number
of iterations for each starting point. The resulting pointsare
averaged to obtain the position of the unknown node. This
procedure gives the approximate centroid of the intersection
region.

B. Tracking Localized Nodes

The localization accuracy of the algorithms considered can
be improved by applying a filtering algorithm on the estimated
nodes positions. Letxk = [xk, ẋk, ẍk, y, ẏk, ÿk]T be the state
vector at timek, where(x, y), (ẋ, ẏ), and(ẍ, ÿ), respectively,
are the position, velocity, and acceleration components inthe
x and y directions. If we assume that the node dynamics is
adequately represented using a linear motion model, then the
state equation can be written as

xk+1 = Fkxk + νk (10)

whereFk is the state transition matrix andνk the process
noise, which is assumed to be a white Gaussian sequence
having covarianceQk. Since the localized node position is
considered as the measurement, the measurement equation is
given by

zk+1 =Hxk+1 + ωk+1 (11)

whereH is the measurement matrix given by

H = [ 1 0 0 0 0 0

0 0 0 1 0 0
] (12)

andωk+1 is the measurement noise, which is the localization
error. In our implementation since the covariance ofωk+1 is

not known, following [23], we used the Cramér-Rao lower
bound (CRLB) instead.

Since the state-space model defined by (10) and (11) is
linear, the well-known Kalman filter (KF) can be used to track
the localized nodes, details of which can be found in numerous
texts including [3].

C. Direct Fusion of Range Measurements

Another approach one could take to track a node is the direct
fusion of the range measurements using filtering techniques
without explicit localization of the node as a prior step.
One reason for considering this approach is that when there
are outlier range measurements, the localization step could
amplify it, leading to reduced tracking performance.

In this approach the state model remains the same as in (10).
The range measurements of all the anchors at a given time
are used to form a measurement vectorrk = [r1, r2,⋯, rN ]T .
Then the following measurement model is easily obtained.

rk+1 = h(xk+1) +wk+1 (13)

whereh(.) is the measurement function given by

h(xk) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

√(x − x1)2 + (y − y1)2√(x − x2)2 + (y − y2)2
⋮√(x − xN)2 + (y − yN)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(14)

andwk+1 = [w1,k+1,w2,k+1, . . . ,wN,k+1]T is the range noise
vector having covariance matrixR = diag(σ2

1
, σ2

2
, . . . , σ2

N ).
With the nonlinear state space model defined by (10) and

(13), a nonlinear filter is required for state update on the arrival
of a new set of measurements.

A number of nonlinear filtering algorithms are available
for state estimation [28]. The extended KF (EKF) uses a
Taylor series expansion to linearize the nonlinear model, and
propagates the mean and covariance of the state through the
linearized state-space model [3]. The unscented KF (UKF)
uses a deterministic sampling approach in which the state
is represented by carefully chosen sample points [17]. These
points are propagated through the nonlinear system without
any linearization of the state space model as in the EKF. It
has been shown that the UKF can perform better that the EKF
[36]. Further, the UKF does not require the calculation of
Jacobian or the Hessian of the nonlinear state-space functions.
Hence, we selected the UKF for the direct fusion of the WASP
measurements.

1) Multiple Model Estimation: The range measurement
noise characteristics are dependent on the radio propagation
environment. Therefore unless a measurement campaign is
conducted before the deployment of the system, the range
noise characteristics such as the varianceσ2

i is not known
a priori. And as mentioned before for applications that require
rapid deployment such an approach is not suitable.

In this paper we consider an alternate approach in which
a multiple model estimation, where the measurement is char-
acterized by not one but several measurement models each
having different noise variance, is used. The well-known
interacting multiple model (IMM) estimator [3] can then be
used to update the node state.
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Fig. 8. Measured standard deviation of ranging error and theCramér-Rao
lower bound.

VI. SYSTEM PERFORMANCE

We performed extensive field trials to evaluate the perfor-
mance of WASP. In this section we first present the ranging ac-
curacy of WASP in different environments and then present the
results of the localization and tracking algorithms described in
the previous section.

A. Ranging Performance

1) Ideal Conditions: We first evaluated the ranging per-
formance of WASP under ideal conditions by connecting two
nodes using cables. The performance of the system at different
input signal levels was measured and the standard deviation
of the ranging errors is shown in Fig. 8, along with the CRLB
on the TOA estimation. The CRLB is given by [35]

σ2

r ≥
1

8π2γBW2
(15)

where γ is the signal-to-noise ratio (SNR) and BW is the
bandwidth of the signal. These measurements were made
at 5.8 GHz and WASP has a bandwidth of 125 MHz at
this frequency of operation. The SNR is calculated assuming
thermal noise and a receiver noise figure of 5 dB.

One can observe from Fig. 8 that the ranging performance
of WASP is not affected by the input signal level as long as it
is above -85 dBm.2 When the input signal is above this level,
there exists a noise floor of nearly 7 cm. This floor is due to
other sources of error that are independent of the input signal
level, including noise in the baseband electronics, quantization
noise in the converters, and phase noise in the oscillator.

2) Outdoor Trial - Soccer Field:In this trial nine anchors
were placed on the periphery of the soccer field and five nodes
were placed on the centerline. The true positions of the anchors
and the nodes were obtained through a field survey with the
center of the soccer field as the origin. In this trial the TDMA
frame consisted of 20 time slots each having a duration of
4 ms. In every frame each anchor transmits once and each node

2An RF input signal level of -85 dBm corresponds to a range of nearly
200 m for our system in free space.
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Fig. 9. Range error distribution between anchors and the nodes in the soccer
field trial.
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Fig. 10. Range error distribution between anchors and the nodes in the
indoor LoS trial.

transmits twice. This gives a location update rate of 25 Hz for
each node.

Fig. 9 shows the range error distribution obtained in this
trial. One can see that in this trial the WASP provides high
ranging accuracy, with nearly 85% of the ranging errors are
less than 15 cm.

3) Indoor LoS Trial: This trial was conducted in a large
room in a sporting facility building with metal cladding. The
room is used for performance monitoring of athletes and
consisted of several apparatuses with metal structures. Similar
to the outdoor trial nine anchors and five static nodes were
used with the same TDMA frame structure. The anchors were
placed roughly in a circle of radius 10 m, and five nodes were
placed inside the circle in a straight line at 1 m separation.

The range error distribution is shown in Fig. 10. The
distribution shows a positive bias in the errors. This indicates
a multipath condition inside the laboratory. Of all the ranging
errors 82% are less than 0.5 m.

4) Indoor NLoS Trial: This trial was conducted inside a
regular office building. The building layout and the node
locations are shown in Fig. 11. The internal walls consistedof
a mix of plasterboard, reinforced concrete, metal frames, and



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEW, VOL. XX, NO. X, YYY YYYY 10

−10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

x (m)

y(
m

)

Fig. 11. Node placement in the indoor NLoS trial. Anchors aredenoted by
⧫ and node locations by◾.

−10 −5 0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

Error (m)

R
el

at
iv

e 
F

re
qu

en
cy

Fig. 12. Range error distribution between anchors and the nodes in the
indoor NLoS trial.

glass. In this trial nine WASP nodes were placed at surveyed
locations and assumed as the anchor nodes. Another node was
placed at various locations throughout the building as shown
in the figure and was localized. At each location of the node
several ranging measurements were obtained. From the layout
it is easy to see that for most pairs of nodes the LoS path is
blocked by the walls and partitions inside the building.

The range error distribution for this case is shown in Fig. 12.
Observe from the figure that there is a considerable probability
mass away from the main cluster. In this trial only 65% of the
ranging errors are less than 0.5 m.

B. Localization Performance

The localization performance of WASP was evaluated in
both static and dynamic scenarios. As we had no indepen-
dent system for high accuracy tracking of nodes, evaluation
of location error was only possible by using the surveyed
locations of static nodes. For this the measurements collected
in Sections VI-A2, VI-A3, and VI-A4 were used. In a dynamic
scenario, however, only the evaluation of relative location error
is possible, where two nodes are constrained to have a fixed

TABLE II
RMS LOCALIZATION ERROR(CM) — STATIC SCENARIO

Trial LS RLS POCS KF UKF IMM/UKF

Outdoor 12.1 12.0 19.7 11.23 11.9 11.9
Indoor LoS 21.2 16.3 24.1 14.0 18.1 17.9
Indoor NLoS 89.1 68.8 61.0 66.2 74.1 65.8
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Fig. 13. Complementary cumulative distribution function of relative location
error in the dynamic trial.

separation. Using the estimated locations of the two nodes,the
separation error was calculated.

1) Static Trials: Table II shows the root mean square
(RMS) localization error performance obtained using different
localization algorithms. The POCS algorithm only penalizes
range measurements that are less than the estimated range.
Hence, in NLoS environments, where biased range measure-
ments are expected, the POCS algorithm is seen to perform
the best. The results also show that compared to the standard
LS algorithm the proposed RLS algorithm reduces the RMS
error by 20.3 cm, because it effectively removes the outlier
measurements. The IMM estimator performs better compared
to the UKF in NLoS environments because it better captures
the varying noise characteristics through the use of multiple
measurement models.

In the outdoor data, ranging errors are dominated by system
noise and there is no significant bias present. In this case
the LS techniques, which use a quadratic penalty function,
performs much better than the POCS algorithm. In the indoor
LoS case, multipath reflections, although not as severe as in
the NLoS case, still causes large outliers. Again the advantage
of using the new RLS algorithm over standard LS algorithm
can be clearly seen, nearly 23% reduction in RMS location
error.

2) Dynamic Trial: We conducted a dynamic trial in which
a cyclist was tracked in a velodrome. Two nodes were fixed
to the bicycle at a separation of 0.7 m and nine anchors were
setup around the velodrome track. Using the range measure-
ments obtained at these nine anchors each node is tracked
independently using the two tracking approaches considered.
The complementary cumulative distribution of the separation
error, i.e., the difference between the true and the calculated
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TABLE III
PERFORMANCE COMPARISON WITH OTHER SYSTEMS. (µr - MEAN RANGING ERROR, µp - MEAN LOCATION

ERROR, AND Pe - PROBABILITY OF RANGING ERROR)

Ref. Environment
BW (MHz) Performance

Ref. WASP Ref. WASP

[9] Steel and LoS 500 125 µr = 66 cm µr = 38 cm

[9] Sheet rock/aluminum stud, NLoS 500 125 µr = 91 cm µr = 48 cm

[4] a Several buildings, NLoS 100 125 60%,Pe < 3 m 65%,Pe < 0.5 m

[1] b Wood building, NLoS 150 125 µp = 0.49 m 0.49 m

[25] Office building, NLoS 40 125 RMSE = 1.23 m RMSE = 0.61 m

aThe results presented in [4] were based on measurements collected at three different sites, which are
made of different materials. The corresponding figure presented for WASP is based on the setup described in
Section VI-A4.

bThe measurements are obtained using a system similar to WASP(differences between the two are described
in Section II). The corresponding performance measure quoted for WASP is the median error. But this was
obtained in an office building with multiple walls and not allof them are made of wood.

separation, is shown in Fig. 13.
It can be seen from the figure that nearly all the probability

mass of the separation error is less than 0.5 m for both
the direct fusion algorithms. RLS denotes the localization
performance obtained using the proposed robust LS algorithm
before applying any filtering. When a KF is applied on the
localized data, the separation error obtained, shown by the
RLS-KF curve in the figure, reduces significantly and is
comparable to that obtained using the direct fusion approach.

C. Comparison to Existing Systems

While most publications in this field report simulation
results, there are some groups that have performed and re-
ported measurements using real systems. In this section we
compare our results with some of those previously reported.
In all cases we use our data set that most closely matches
their measurement environment. The results are summarized
in Table III. When interpreting the results, one should take
into consideration that neither the radio parameters nor the
environmental conditions were the same.

The first three results in Table III evaluate the ranging
accuracy and in all three cases expensive laboratory equip-
ment such as network analyzers is used to perform ranging.
Therefore they do not have the additional issues such as time
and frequency synchronization that we encounter in using low-
cost wirelessly connected nodes, nonetheless our results are
generally better. Further, compared to [9] we have only one
quarter the bandwidth available for ranging.

The last two comparisons are of localization error. In both
[1] and [25] the performance of these systems and our system
are similar, taking into account the radio bandwidth available.
As mentioned before, compared to [1] WASP has the advan-
tage that it uses a single radio for both positioning and data
communication, reducing the cost and power consumption.
[25] uses Data ExacTime GPS and rubidium-based oscillators
to time synchronize the nodes, which are neither small nor
low-cost.

VII. C ONCLUSIONS

In this paper we presented a localization system that we
have developed called WASP, and field trials to validate its

performance across a number of applications. The system was
designed to permit rapid setup and to provide high accuracy
localization using low-cost hardware, as well as providinghigh
rate data communications. The hardware was designed to be
small and low-power, yet with sufficient processing capability
to be used for both wireless sensor network (WSN) research
and application trials. The sophisticated signal processing
algorithms that form part of the system overcome many of
the hardware limitations including lack of time and frequency
synchronization between nodes, varying propagation delay
through the node electronics, and bandwidth limitations ofthe
low-cost RF electronics. New algorithms were presented for
super-resolution measurement of TOA and for localization in
LoS and NLoS environments.

WASP has been field tested in a variety of scenarios and the
results show that WASP can achieve ranging error less than
0.15 m outdoors. In indoor environments where LoS is present,
WASP achieves better than 0.5 m accuracy 85% of the time
and in NLoS environments the same error figure is achieved
65% of the time. The RMS localization error of WASP varies
from 0.11 m to 0.61 m across these environments.

Trials to date have included tracking elite athletes in a range
of sports and tracking vehicles in mines. In these applications
localization is based on ranging between each mobile node
and multiple anchor nodes. WASP hardware and protocols are
also suitable for cooperative localization in which the useof
range measurements between mobile nodes permits tracking
of nodes that are not within the radio communication range
of three or more anchors. We are undertaking research into
cooperative localization, particularly to reduce the number
of anchor nodes required in large networks. We are also
undertaking continuing research to improve the performance
of the TOA estimation, localization, and tracking algorithms
across a wide range of applications.
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