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Abstract

We summarise the classical (gas diffusion) theory of decompression, which is an

interesting application of elementary differential equations. We show that the

derivation of recreational scuba diving tables from this theory is an ill-defined

problem in optimisation.
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1. Introduction

All scuba divers are trained to follow procedures that limit the time spent at depth,

in order to minimise the risk of decompression sickness. These procedures, encoded

either on waterproof tables or in the algorithm of a diving computer, are based on

a mathematical theory that is relatively simple in structure. Classical decompression

theory, first developed by J.S. Haldane [4, 6], describes the diffusion of nitrogen in the

diver’s body by a simple independent-compartment model, consisting of a small system

of ordinary differential equations governed by some simple constraints.

As millions of young people have now been certified as scuba divers [9, p. 32],
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educators may find it useful to give decompression theory as a motivating example in

calculus classes. We shall see that much of the analysis requires little more than careful

consideration of the solutions of relatively straightforward differential systems.

In addition to explaining classical decompression theory, we aim to show how the

design of optimal diving procedures is a rather ill-defined process which is worthy of

further study. A day of recreational diving often involves successive dives, to different

depths, separated by a rest period at the surface (known as the surface interval). The

design of recreational diving tables can be formulated as an optimisation problem.

Existing tables are often protected by commercial secrecy, and we are not aware of any

detailed discussion of table design in the open literature.

The remainder of the article is set out as follows. In §2 we consider some of the

basic theory behind the constraints that limit the duration of a dive. This sets the

parameters of the problem and enables the subsequent calculations to be considered

in the following sections. We investigate two relatively simple cases; in §3 we examine

the limits to the duration of a single no-decompression dive. This analysis is extended

in §4 to considering the optimal plan for two dives separated by a prescribed surface

interval. We close with a short discussion.

2. The basic theory

The definitive modern text on diving physiology and medicine is that by Bennett

& Elliott [5]; decompression theory is covered in a chapter by Tikvisis & Gerth [10]

which should be consulted for technical references. Accessible, popular introductions

to diving physiology are given by Bookspan [3], Martin [8] and Lippmann [7]. What

follows is a simplified summary.

Scuba equipment is designed to deliver the breathing air to the diver at a pressure

equal to that of the ambient water. The classical explanation for decompression

sickness [2] is that, at this increased pressure, nitrogen in the breathing air diffuses

into the diver’s body. When the diver returns to the surface, the ambient pressure is
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reduced and the body now contains an excess of nitrogen. Nitrogen can diffuse from

the body tissues back into the lungs where it is exhaled. However if the quantity of

dissolved nitrogen in a tissue exceeds a certain critical value, nitrogen will come out

of solution and form bubbles of nitrogen gas, either in the blood or in other tissues.

The presence of these bubbles leads to decompression sickness and other ills. For a

popular demonstration, take two bottles of carbonated soft drink: opening the first

bottle rapidly leads to the formation of large bubbles, while opening the second bottle

slowly does not.

2.1. The diffusion of nitrogen

The ambient water pressure p increases linearly with depth so at a distance d beneath

the surface it is p = p0 +λd atmospheres, where p0 is the pressure at the water surface.

Typically p0 = 1 atmosphere at sea level and λ is approximately 0.1 atmospheres

per metre in sea water; in other words at a depth of 10 metres the water pressure

is roughly twice the sea-level surface pressure p0 and increases by one atmosphere

for every further 10 metres descended. Since air is composed of approximately 21%

oxygen and 79% nitrogen, the nitrogen component of the diver’s breathing air exerts

a partial pressure of 0.79p atmospheres according to Dalton’s Law. More generally we

may consider dives in lakes at higher altitudes (that is a reduced surface pressure p0)

or using a breathing gas which has a different fraction µ of nitrogen. Naturally the

partial pressure of nitrogen in the breathing gas is then simply µp.

Nitrogen diffuses from the breathing gas in the lung air space into the diver’s blood,

and then in turn, into other bodily tissues. The diffusion from air into blood occurs

so quickly that it can be treated as a virtually instantaneous process and the blood

then effectively also carries a nitrogen partial pressure of µp atmospheres. This diffuses

slowly into other bodily tissues and in the classical theory it is assumed there are a

finite number of these, say m, each connected independently to the blood. If we label

these tissues i with i = 1, . . . , m, and suppose that the nitrogen saturation (or tension)

in tissue i is xi atmospheres, then diffusion is assumed to satisfy Fick’s law. This asserts
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that the rate of diffusion of nitrogen from the blood into the tissue is proportional to

the difference in their respective nitrogen concentrations. Mathematically, this means

that the time derivative of nitrogen tension is simply

ẋi = −ki(xi − µp) (1)

where the value of the diffusion constant ki depends on the characteristics of tissue i.

Thus the complete state of the body can be summarised in the form of a vector x =

(x1, . . . , xm) of tissue nitrogen tensions governed by independent diffusion equations.

The constants ki in equation (1) are usually quoted in the literature in terms of

‘half-times’ τi defined to be the time elapsed for an initial saturation xi = xi(0) to

be reduced by a factor two when the surrounding ambient pressure p = 0. It is easy

to show that τi = ln(2)/ki; for human tissues these half-times typically lie in the

range from about 10 minutes to as long as 6 hours. The original model formulated

by Haldane [4, 6] consisted of five tissues (or compartments) with halftimes between

5 and 75 minutes; a more up-to-date example with eight compartments is the DSAT

model with parameters as listed in Table 1.

compartment i 1 2 3 4 5 6 7 8
halftime τi (minutes) 5 10 20 30 40 60 80 120

saturation M0,i (atm) 3.035 2.533 2.049 1.830 1.707 1.576 1.507 1.438

Table 1: Typical halftime and surfacing M -values for the eight compartments used in the
DSAT model.

Classical decompression theory is founded on the assumption that each tissue i can

tolerate a maximum nitrogen tension of Mi(p) before nitrogen bubbles begin to form.

This critical tension, commonly referred to as the M -value, is a function of the ambient

pressure p and increases with p. In the original Haldane model [4] it was assumed that,

for a diver breathing compressed air, the critical nitrogen tension is simply twice the

partial pressure of nitrogen in the breathing air at ambient pressure; this then implies

that Mi(p) = 1.58p for all compartments i. In more sophisticated models, the critical

nitrogen tension is taken to be a linear function of p with coefficients that depend on
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the properties of the particular tissue under investigation. In this case

Mi(p) = M0,i + (p − 1)M ′

i (2)

where M0,i is the maximum nitrogen saturation that can be tolerated at a pressure

of one atmosphere; this is often known as the “surfacing M-value” when the water

surface is at sea level. Table 1 includes representative surfacing M -values extracted

from Bookspan [3, pp. 16, 23].

2.2. Dive planning constraints

Before descending it is normal practice for the diving party to agree on the duration

and purpose of the impending dive. This ‘dive plan’ specifies the intended depth d(t)

as a function of time t during a dive and generally is one of two basic kinds. The

first, a no-decompression dive, is one which, in theory, can be aborted at any time

without requiring special decompression procedures. For this to be possible, it has

to be ensured that the nitrogen saturation in each of the diver’s tissue compartments

never exceeds the maximum nitrogen saturation that can be tolerated at sea level: this

demands that

xi(t) ≤ Mi(p0) for all t. (3)

In contrast, on a decompression dive, the diver may not be able to ascend immediately

to the surface at any time: obligatory decompression stops are required during the

ascent. This more complicated type of dive plan satisfies only the minimal requirement

for avoiding decompression sickness that the nitrogen saturation in each tissue is less

than the maximum saturation appropriate to the present depth. This then imposes

the weaker requirement that

xi(t) ≤ Mi(p(t)) = Mi(p0 + λµd(t)) for all t (4)
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and, as we have already remarked that Mi(p) is frequently taken to be a linear function

of p, the constraint (4) becomes linear in depth so

xi(t) ≤ (M0,i + (p0 − 1)M ′

i) + λµM ′

id(t) for all t. (5)

It is worth noting that the Haldane model was developed and used for planning

staged decompression dives in military and commercial circumstances, rather than

no-decompression dives which are more common for recreational purposes.

3. No-decompression limits

3.1. Theory

A simple optimization problem is to determine the “no-decompression limit” for

a given depth D. Put simply, this is the maximum permissible duration T of a no-

decompression dive to a constant depth D, starting and ending at the surface. To a first

approximation it may be assumed that ascent and descent occurs quickly, so that the

dive profile can be idealised as a simple square form, d(t) = D if 0 < t < T and d(t) = 0

otherwise. For the purposes of the analysis it is assumed that the diver is fresh, that is,

they have not had recent exposure to changes in pressure; their initial state x(0) is in

equilibrium with air at sea level. Then xi(0) = 0.79 atmospheres for all compartments

i although for planning multiple dives during a day the no-decompression limit for a

diver is critically dependent on their particular recent diving history.

Thus we seek to maximise T subject to the constraints

xi(t) ≤ Mi(p0) for all t

where

ẋi = −ki(xi − µp(t))

with initial condition xi(0) = 0.79 unless otherwise stated. Writing P = p0 + λD for
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the ambient pressure at depth D, and Q = µP = µp0 + µλD for the nitrogen partial

pressure at this depth, we have

ẋi = −kixi + kiQ.

This first order DE has solution

xi = Q + Aie
−kit

where the constant Ai is determined by the initial value xi(0) yielding

xi(t) = Q + (xi(0) − Q)e−kit. (6)

Since xi(t) is monotonically increasing, the maximum permitted nitrogen tension Mi(p0)

is reached at time

Ti = −
1

ki

ln

[

Q − Mi(p0)

Q − xi(0)

]

(7)

provided Q ≥ Mi(p0); otherwise this limit is never reached.

Thus, let ndl(D,x) be the no-decompression time limit for a square dive to depth

D for a diver with initial state vector x. Then we have shown that

ndl(D,x) = −min
i

1

ki

ln

[

Q − Mi(p0)

Q − xi(0)

]

(8)

where the minimum is taken over those i such that Mi(p0) ≤ Q, where Q = µp0+µλD.

In particular, for a dive at sea level (p0 = 1) on air (µ = 0.79) by a fresh diver

(xi(0) = 0.79) we have Mi(p0) = M0,i, Q = µ(1 + λD) and Q − xi(0) = µλD in (8).

We define the ‘controlling tissue’ for a no-decompression dive to be the tissue index

i which achieves the minimum in (8).
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3.2. Calculations

The no-decompression limits depend crucially on the behaviour of the surfacing M -

values. In the Haldane model, M0,i = 1.58 for all i, so that for a fresh diver, the

expression

ln

[

Q − Mi(p0)

Q − xi(0)

]

is equal for all i. Hence the minimum in (8) is achieved by taking ki as large as possible,

and the no-decompression limit for a fresh diver (at sea level using compressed air) is

always dictated by the compartment with the shortest halftime. The resulting no-

decompression limits are shown in Table 2.

Depth (m) NDL (minutes) Controlling
Haldane DSAT tissue i

10 ∞ 275.5 7
12 12.9 152.8 6
14 9.0 102.0 5
16 7.1 74.6 5
18 5.8 56.9 4
20 5.0 46.0 3
22 4.4 37.2 3
24 3.9 31.5 3
26 3.5 27.2 2
28 3.2 22.4 2
30 2.9 19.2 2

Table 2: Comparison of theoretical no-decompression limits (NDL) under the Haldane
and DSAT models and calculated using (8). The rightmost column identifies the tissue
compartment i in the DSAT model which fixes the NDL. The calculations assume that the
diver is fresh, breathes compressed air, and the surface is at sea-level.

For the DSAT model (given in Table 1), the surfacing M -values decrease with i,

and range from M0,1 = 3.03 > 1.58 for the fastest compartment to M0,8 = 1.43 < 1.58

for the slowest. These lead to no-decompression limits (NDLs) which are much longer

than the Haldane predictions and, perhaps surprisingly, it is not always the fastest

compartment which fixes the upper limit on the duration of the dive. The sample

results in Table 2 suggest that at relatively shallow depths the slow compartments de-

termine the length of the dive and the expected importance of the faster compartments
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only becomes apparent for deeper excursions.

It is easy to show that the NDL is a decreasing function of depth and much of its

attraction lies in the conservative assumptions applied for its calculation. We have

mentioned already that when finding the NDL the diver is supposed to reach his

maximum depth D immediately, and stay at that depth for the entire duration of the

dive. In practice of course the diver cannot descend and ascend instantaneously but

it can be shown that the set of all no-decompression dives is ‘monotone’ in the sense

that if d1(t) is a no-decompression dive and d2(t) ≤ d1(t) for all t, then d2(t) is also

a no-decompression dive. Hence any dive with a maximum depth of D and maximum

duration t ≤ ndl(D) is guaranteed to be a no-decompression one and the diver can

proceed safe in the knowledge that decompression will not be required.

It may be of interest to determine how the predicted NDL is affected should the

descent and/or ascent be specified. Divers frequently change from one depth to another

at a steady speed and it turns out that the governing equation for xi(t) can still be

solved explicitly if the depth is taken to be a linear function of time. Further elaboration

can be introduced by assuming that the diver is not fresh and has dived previously on

the same day and we consider this now.

4. Optimal planning for two no-decompression dives

4.1. Double dives

Recreational divers normally plan two dives for the day separated by a period at

the surface. Suppose the first dive has a square profile to a depth d1 metres for time

t1 minutes, followed by a surface interval of s minutes, and then a second dive which is

also a square profile to depth d2 for time t2 minutes. This simple profile is illustrated

in Figure 1.

In all that follows we shall assume that the depths d1, d2 and the surface interval

s are all fixed, and the task is to optimise (some function of) the dive durations t1, t2

subject to the no-decompression constraint.
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depth

times

t1

t2

Figure 1: A typical double dive plan profile

Let us assume that the diver begins fresh; then by equation (6), on surfacing from

the first dive, the diver has tissue states

xi(t1) = µp0 + µλd1(1 − e−kit1) .

While back on the surface, tissues desaturate according to

ẋi = −kixi + kiµp0

so that at the end of the surface interval of s minutes and immediately before the

second dive,

xi(t1 + s) = xi(t1)e
−kis + µp0(1 − e−kis)

= [µp0 + µλd1(1 − e−kit1)]e−kis + µp0(1 − e−kis)

= µp0 + µλd1(1 − e−kit1)e−kis. (9)

During the second dive, tissues again take in nitrogen, according to

ẋi + kixi = kiµ(p0 + λd2)



Decompression 11

with general solution

xi = Cie
−kit + µ(p0 + λd2)

so that on surfacing again

xi(t1 + s + t2) = xi(t1 + s)e−kit2 + µ(p0 + λd2)(1 − e−kit2)

= [µp0 + µλd1(1 − e−kit1)e−kis]e−kit2 + µ(p0 + λd2)(1 − e−kit2)

= µp0 + µλd1(1 − e−kit1)e−ki(s+t2) + µλd2(1 − e−kit2) .

Thus the final tissue saturation is

xi(t1 + t2 + s) = µp0 + µλd1(1 − e−kit1)e−ki(s+t2) + µλd2(1 − e−kit2). (10)

If we define

Q0 = µp0, Q1 = µλd1 and Q2 = µλd2

then these results can be rewritten as

xi(t1) = Q0 + Q1 − Q1e
−kit1

xi(t1 + t2 + s) = Q0 + Q2 + (Q1e
−kis − Q2)e

−kit2 − Q1e
−ki(t1+t2+s).

To satisfy the no-decompression requirement (3) for all 0 ≤ t ≤ t1 + t2 +s, it suffices

(by monotonicity) to simply apply this constraint at the ends of each of the two dives,

i.e. to demand that

xi(t1) ≤ M0,i and xi(t1 + t2 + s) ≤ M0,i.

The first inequality just forces t1 ≤ ndl(d1), the no-decompression limit for the depth

d1. For a fixed t1 ≤ ndl(d1), the second constraint is then satisfied in the interval

t2 ∈ [0, T2] where T2 = g(t1) = ndl(d2,x(t1 + s)) is the no-decompression limit for a
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diver with initial state (9). Hence the set of solutions (t1, t2) that together satisfy our

two constraints is the subgraph

S = {(t1, t2) : 0 ≤ t2 ≤ g(t1), 0 ≤ t1 ≤ T1}

where T1 = ndl(d1). The boundary is piecewise differentiable, with knots occurring

where the controlling tissue changes (i.e. where the minimum in (8) with x = x(t1 + s)

is achieved by two different tissues i).

Figure 2 shows an example solution set for the choices of d1 = 40 metres, d2 =

12 metres and s = 15 minutes. As might have been expected, the boundary is

approximately linear with a negative slope steeper than unity (left panel). Closer

inspection (right panel) reveals that the boundary is convex and slightly nonlinear.
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Figure 2: Example of solution set for double dive. Left: Maximum permissible duration of
the second dive, t2, as a function of the duration of the first dive t1. Right: Deviation of
the boundary from a straight line. Here the parameters are d1 = 40 metres, d2 = 12 metres,
s = 15 minutes and the times are computed using the DSAT model.
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4.2. The optimal double dive

We now consider how one might attempt to design the most desirable double dive.

Of course before much progress can be made some appropriate objective function must

be defined that measures the attractiveness of any particular dive plan. In the absence

of any other function, an obvious start point would be to consider the total time t1 + t2

spent underwater. In that case the problem reduces to maximising T = t1 + t2 subject

to

Q0 + Q1 − Q1e
−kit1 ≤ M0,i (11)

Q0 + Q2 + (Q1e
−kis − Q2)e

−kit2 − Q1e
−ki(t1+t2+s) ≤ M0,i (12)

for all i. However it can easily be shown that the solution is trivial: if d1 > d2 then

the solution is just t1 = 0 and t2 = ndl(d2). This result is intuitively obvious when

it is realised that the deeper a diver goes so the build-up in nitrogen concentration

progressively increases. Thus to spend the maximum total time the diver simply elects

to go to the shallower depth for as long as the no-decompression limits allow, and does

not dive the deeper depth at all.

This result implies that maximising the total dive time is not a sensible measure

of a good dive plan. Most divers will attest that deep dives are in some sense more

exhilarating and fulfilling than shallow ones; so as a refined objective function, let us

look to the integral of depth over time

Φ = t1d1 + t2d2

subject to the constraints (11) and (12).

To calculate the maximum value of the objective function Φ we use the technique

of Lagrange multipliers. We therefore introduce constants A1, . . . , Am and B1, . . . , Bm
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and define

Y = d1t1 + d2t2 +

m
∑

i=1

Aiai(t1) +

m
∑

i=1

Bibi(t1, t2) (13)

where

ai(t1) = M0,i − Q0 − Q1 + Q1e
−kit1

bi(t1, t2) = M0,i − Q0 − Q1e
−kis(1 − e−kit1)e−kit2 − Q2(1 − e−kit2).

are the constraint functions corresponding to (11) and (12) respectively.

The optimal solution may occur either at

(a) a boundary point of the time domain, or at

(b) a generic stationary point of Y , or at

(c) a point where two of the constraint functions are equal to zero.

Case (a) We must consider the boundary solutions occurring when either t1 = 0 or

t2 = 0 corresponding to only a single dive. The possible boundary points are then

(a1) (t1, t2) = (0,ndl(d2)) and

(a2) (t1, t2) = (ndl(d1), 0)

but case (a2) can be shown to be suboptimal as follows. For a fixed value of t1, the

value of d1t1 + d2t2 is clearly greatest when t2 is maximised subject to the constraints.

This is to say that t2 should equal ndl(d2,x(t1 + s)) with x(t1 + s) given by (9). If

t1 = ndl(d1) then, for any nonzero surface interval s, the tissue saturations x(t1+s) at

the start of the second dive are clearly sub-critical, so that ndl(d2,x(t1 + s)) > 0, and

sub-case (a2) is not optimal, and can be safely excluded from further consideration.
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Case (b) Stationary points of Y are found by considering the partial derivatives

∂Y

∂t1
= d1 − Q1

∑

i

Aikie
−kit1 − Q1

∑

i

Bikie
−ki(s+t1+t2)

= d1 − Q1

∑

i

Aikie
−kit1 −

∑

i

BikiQ1,ie
−ki(t1+t2) (14)

∂Y

∂t2
= d2 +

∑

i

Biki

[

Q1e
−ki(s+t2)(1 − e−kit1) − Q2e

−kit2

]

= d2 +
∑

i

Bikie
−kit2

[

Q1i(1 − e−kit1) − Q2

]

(15)

where we have written Q1,i = Q1e
−kis since the surface interval duration s is taken to

be fixed.

Generic stationary points of (13) are determined by solving

∂Y

∂t1
=

∂Y

∂t2
= 0

subject to the additional requirement that one of the constraint functions has value

zero (while the other constraint functions are all positive). There are essentially two

sub-cases:

(b1) ai(t1) = 0 for some i whereupon the corresponding Lagrange multiplier Ai is

nonzero while all other constraint functions are positive and their Lagrange

multipliers zero.

(b2) bi(t1, t2) = 0 for some i. Now Bi is nonzero with all the other constraint functions

positive with corresponding Lagrange multipliers zero.

Sub-case (b1) implies that t1 is equal to the no-decompression limit ndl(d1) and that

t2 is strictly less than the resulting no-decompression limit ndl(d2,x(t1 + s)) for the

second dive. However, this combination is suboptimal and can be excluded by the

same argument used to dismiss (a2).

Thus we need only consider sub-case (b2) which implies that t1 < ndl(d1) and

t2 = ndl(d2,x(t1 + s)). All the Lagrange multipliers Ai can safely be set to zero and
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a solution sought in which the partial derivatives (14) and (15) are zero together with

∂Y

∂BI

= 0

Bi = 0 for i 6= I

if they exist within the constraint set. Effectively I is the controlling tissue: the final

tissue saturation in tissue I is then equal to the surfacing limit M0,I .

There are m possible candidates for the identity of the controlling tissue I. Putting

∂Y/∂t1 = 0 gives

0 = d1 +
∑

i

Bi[−kiQ1e
−ki(s+t1+t2)]

= d1 − Q1kIBIe
−kI(s+t1+t2)

implying

kIBIQ1 = d1e
kI (s+t1+t2). (16)

Moreover ∂Y/∂t2 = 0 forces

0 = d2 +
∑

i

Bi[kiQ1,i(1 − e−kit1)e−kit2 − kiQ2e
−kit2 ]

= d2 + BI [kIQ1,I(1 − e−kIt1)e−kIt2 − kIQ2e
−kIt2 ]

= d2 + kIBI [Q1,I(1 − e−kIt1)e−kIt2 − Q2e
−kIt2 ]

and then substituting (16) gives

0 = d2 + d1e
kI (t1+t2)

[

1 − e−kIt1 −
Q2

Q1,I

]

e−kI t2

= d2 + d1e
kI t1

[

1 − e−kIt1 −
Q2

Q1,I

]

= d2 − d1 + d1
Q1,I − Q2

Q1,I

ekIt1
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so that

ekI t1 =
Q1,I(d1 − d2)

d1(Q1,I − Q2)
. (17)

For ∂Y/∂BI = 0 then

M0,I − Q0 − Q1,I(1 − e−kIt1)e−kI t2 − Q2(1 − e−kIt2) = 0

yielding

ekIt2 =
Q1,I(1 − e−kIt1) − Q2

M0,I − Q0 − Q2
.

The numerator on the right hand side of the last expression is, using (17),

Q1,I − Q2 − Q1,Ie
−kIt1 = Q1,I − Q2 − Q1,I

d1(Q1,I − Q2)

Q1,I(d1 − d2)

= (Q1,I − Q2)

[

1 −
d1

d1 − d2

]

= −
(Q1,I − Q2)d2

(d1 − d2)

so that

ekI t2 = −
(Q1,I − Q2)d2

(d1 − d2)

1

M0,I − Q0 − Q2
. (18)

Equations (17) and (18) together determine at most m candidates for optimal solutions

(t1, t2) at generic stationary points.

Case (c) If two constraint functions are to be simultaneously zero then one of three

possibilities occur: either

(c1) ai(t1) = aj(t1) = 0 for some i 6= j; or

(c2) bi(t1, t2) = bj(t1, t2) = 0 for some i 6= j; or

(c3) ai(t1) = 0 for some i and bj(t1, t2) = 0 for some j,

while all other constraint functions are assumed to take nonzero values. The equal-

ity ai(t1) = 0 implies that t1 = ndl(d1); similarly bj(t1, t2) = 0 leads to t2 =

ndl(d2,x(t1 + s)). Of the three possibilities the first (c1) can be excluded because



18 Baddeley and Bassom

it implies t2 < ndl(d2,x(t1 + s)). Thus we only need to examine the other two; we

remark that (c3) requires that t1 = ndl(d1) and t2 = ndl(d2,x(t1 + s)) which is the

double dive conducted to the no-decompression limits on each occasion.

Subcase (c2) is equivalent to identifying those cases when the no-decompression

limit for the second dive is controlled by two tissues; that is, when the minimum in (8)

is attained by two tissues i and j, for initial state (9). First consider the single tissue

i. Observe that bi(t1, t2) = 0 if and only if

Q1,i(1 − e−kit1)α + Q2(1 − α) = Ei

where α = e−kit2 and Ei = M0,i − Q0. A solution with α ∈ (0, 1) occurs whenever

either

Q1,i(1 − e−kit1) < Ei < Q2

or

Q1,i(1 − e−kit1) > Ei > Q2.

If the set

Di = {t1 > 0 : bi(t1, t2) = 0 for some t2 > 0}

then solutions with α ∈ (0, 1) are feasible for all t1 > 0 if Q1,i ≤ Ei ≤ Q2. In contrast,

if Q1,i ≤ Ei and Ei > Q2 then no solutions occur whatever the value of t1. Lastly,

Di = (0, ci) if Q1,i > Ei and Ei ≤ Q2; and Di = (ci,∞) if Q1,i > Ei > Q2, where

ci = −
1

ki

log

[

1 −
Ei

Q1i

]

.

We remark that for any t1 ∈ Di the solution of bi(t1, t2) = 0 in t2 exists and equals

fi(t1) =
1

ki

log
M0i − Q0 − Q2

Q1i(1 − e−kit2) − Q2
.
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Thus, for two tissues i and j, a solution of

bi(t1, t2) = bj(t1, t2) = 0

exists precisely when the function gij(t1) = fi(t1) − fj(t1) has a root t∗1 in the inter-

section Di ∩ Dj . If this happens then putting t∗2 = fi(t
∗

1) = fj(t
∗

1) yields the required

solution (t∗1, t
∗

2).

The implication is that to compute subcase (c2) we examine each pair of tissues

i and j in turn. It has to be determined whether the intersection Iij = Di ∩ Dj is

nonempty; if this is so we have to find whether a root of gij exists in Iij . In this

eventuality the solution (t∗1, t
∗

2) has to be computed and checks made to ensure that

the solution satisfies the remaining constraints, ak(t∗1) ≥ 0 for all k and bk(t∗1, t
∗

2) ≥ 0

for all k 6= i, j.

4.3. A numerical example

We illustrate the calculation for the optimum double dive taking the parameters

used in constructing Figure 2, i.e. successive dives to d1 = 40 and d2 = 12 metres

separated by a surface interval of s = 15 minutes. We again use the DSAT model

parameters summarised in Table 1.

Candidates for the optimum double dive were calculated following the procedure

described above. The possibilities are listed in Table 3 which reveals that the best

plan is achieved by (b2), the stationary point, with t1 = 7.33 minutes and t2 = 130.4

minutes. For comparison if the first dive is conducted up to its no-decompression limit

of t1 = 8.94 minutes (case (c3)), the second dive is then restricted to t2 = 125 minutes.

We remark that for case (c2) there is actually a crossing between tissues 5 and 8 at

(t1, t2) = (3.19, 188.97) but this is an infeasible solution since this value of t2 exceeds

the NDL for the second dive.

Figure 3 shows the maximum value of Φ = d1t1 +d2t2 taken over the possible range

of t2 for each fixed t1. The optimum clearly occurs at the stationary point of this graph,
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case t1 t2 t1d1 + t2d2

(a1) 0 152.8 1833.2
(b2) 7.32 130.4 1858.2
(c3) 8.94 125.0 1856.7

Table 3: Candidates for the optimum double dive using the parameters of Figure 2.

where t1 ≈ 7.32 minutes. We noted earlier that, to a first approximation, the graph of

t2 against t1 in Figure 2 is virtually linear with a slope of approximately −3.1. Since

d2/d1 = 40/1.2 = 3.33, the graph of d1t1 +d2t2 against t1 is also essentially linear with

an almost negligible slope. Figures that gives rise to the stationary point in Figure 3.

0 2 4 6 8

18
35

18
40

18
45

18
50

18
55

t1

Φ

Figure 3: Maximised value of d1t1 +d2t2 (maximised over t2 for fixed t1) plotted against the
duration of first dive t1. Same parameters as used in Figure 2.

Continuing with the same example, Figure 4 shows the effect of varying the surface

interval s. For small values of s (less than about 3 minutes) the optimum is achieved

when t1 = 0; informally this arises because the nitrogen build-up is great during the

first (deep) dive and the recovery period on the surface very short. Then the reduction

in the second dive duration due to the after-effects of the first is so severe that the

optimal double dive would forego the first dive altogether. When s is large, that is

greater than about 20 minutes, the optimum is achieved when the first dive is extended
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to its full NDL t1 = ndl(d1). For intermediate values of s the optimum typically occurs

at a stationary point.
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Figure 4: Family of curves analogous to previous Figure but allowing for various surface
intervals s.

5. Discussion

In this article we have shown how elementary decompression theory can be developed

using simple differential equation models. It is seen how optimal dive plans can be

deduced, although this issue is not as simple as might have been envisaged at the

outset for the reason that the profile of the dive pattern is sensitively dependent on

the definition of a good dive. In principle what we have developed is sufficient to

formulate a complete set of no-decompression tables for both single and combination

dives. Software for performing the calculations in the paper is available [1].

We have deliberately steered clear of discussing decompression dives. There is no

technical reason why such dives cannot be handled using exactly the same technology

as used here subject to the complication that stops at specified depths would need
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to be incorporated into the model. Of course there comes a point where the intrinsic

attractiveness of analytic formulae is overtaken by the sheer number of free parameters

and a numerical solution is then more efficient. Nevertheless, we would argue that

the modelling described here is easily extended in many directions and thus ideal for

further investigation. Of particular interest might be an examination of the effect on

the NDL of imposing specified descent and ascent time-histories and the construction

of the best dive plan comprising of more than two individual dives. The modelling

of decompression is a topic that contains a richness of possibilities although there is

nothing quite as exciting as putting the theory into practice on a sunny day.
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