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Bioaccumulation

William A. Maher, Anne M. Taylor,  Graeme E. Batley and Stuart L. Simpson

5.1 Introduction
Bioaccumulation refers to the accumulation of contaminants in the tissues of organisms 
through any route, including respiration, ingestion, or direct contact with contaminated 
sediment or water (USEPA, 2000a; Rainbow, 2007; ASTM, 2010). Organisms living in or 
on sediments are able to bioaccumulate contaminants from both pore waters and overly-
ing waters and via ingestion of sediment particles and food. Organisms suitable for use as 
‘biomonitors’ have the capacity to concentrate those portions of contaminants that are in a 
bioavailable form.

Metals and metalloids bioaccumulate particularly in organisms at lower trophic levels, 
such as some polychaetes and molluscs (Taylor and Maher, 2003; Waring et al., 2006), and 
trophic transfer may be observed; for example, transfer of metals from phytoplankton to 
filter-feeding molluscs and herbivorous gastropods or barnacles and then to carnivorous 
gastropods and polychaetes (Wallace et al., 1998; Zhang and Wang, 2006; Rainbow and 
Smith, 2010). Generally, biomagnification (increase in concentration through three or more 
trophic levels) does not occur with metals (Goodyear and McNeill, 1999; Cardwell et al., 
2013) but can occur for the metalloid selenium and mercury (Bowles et al., 2001; Barwick 
and Maher, 2003).

Most non-ionic hydrophobic organic chemicals (HOCs), such as PCBs and PAHs, are 
readily taken up by organisms and accumulate in tissues (Moore et al., 2005; ASTM, 2010). 
Synthetic organic chemicals such as PCBs are highly resistant to metabolic degradation 
and so can accumulate to high concentrations (Fiedler et al., 1994). Some organic chemi-
cals, for example PAHs, are readily taken up by many organisms but are rapidly metabo-
lised (Maher and Aislabie, 1992). Many non-ionic organic chemicals are lipophilic so can 
also biomagnify through food chains (Kelly et al., 2007).

A comparison of bioaccumulated concentrations in sedentary organisms from differ-
ent sites can assist in assessing the risk posed by contaminants and sources. The organisms 
can be either field-sampled or caged. Phillips (1980) has identified three categories of 
factors that may contribute to changes in tissue contaminant concentrations through time:

 ● variation in contaminant delivery to the environment;
 ● changes in ambient factors affecting metabolism, such as salinity and temperature; and
 ● the organisms’ physiology, especially aspects relating to reproductive cycles and changes 

in mass.
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These factors rarely operate in isolation, and the interactions between them complicate 
interpretation of their combined effects.

5.1.1 Bioaccumulation as a line of evidence
The focus of this chapter is on the use of bioaccumulation data as a line of evidence to 
indicate that organisms have been exposed to bioavailable contaminants. That evidence is 
valuable support for other lines of evidence, such as measures of high concentrations of 
sediment contaminants (Chapter  3), or toxicity (Chapter  4), or biomarker responses 
(Chapter 6). Attempting to quantify bioaccumulation to provide a ranking is somewhat arbi-
trary, the intent being to derive a ranking of accumulated tissue concentrations from values 
measured to represent ranges for unimpacted, potentially impacted and impacted. 
A ranking scheme recommended for Australia and New Zealand (Chapter 1, Section 1.4) has 
three classes: (i) Not significantly different from control; (ii) Significantly different (P < 0.05) 
and ≤3 × control; and (iii) Significantly different (P < 0.05) and >3 × control. These rankings 
are, however, arbitrary and meaningless unless the baseline contaminant concentrations and 
potential toxicity are taken into account. Species or types of organisms will have different 
natural baseline concentrations of essential metals such as copper and zinc, and changes in 
concentrations relative to baseline will have different effects in different organisms. Selenium 
is an example of an element with a narrow concentration range: there is little difference 
between it being essential and being toxic, and small increases can have deleterious effects 
(Janz et al., 2010). In the case of HOCs, the baseline concentrations should be zero.

As the following pages will show, detailed investigations can improve the value of bio-
accumulation assessments by providing an overview of sources of contaminant variability 
in organisms, and knowledge of the range of concentrations that may found in clean 
natural background situations. Bioaccumulation beyond that range then may be an indica-
tion of contaminated sediment. 

5.2 Use of bioaccumulation data

5.2.1 Measures of bioaccumulation
Data for use in a weight-of-evidence (WOE) assessment are best obtained from measure-
ments of contaminant concentrations either in field-collected native organisms or in 
field-transplanted (caged) organisms (which may be sourced from aquaculture). 
Organisms can be exposed to collected sediments in the laboratory, but diffusion of 
 contaminants from pore water can result in elevated contaminant concentrations in the 
overlying water which are not representative of a field situation, even when frequent 
changes of overlying water are made.

The simplest assessment involves measuring contaminant bioaccumulation from a 
particular sediment (at a test location or in a laboratory test) and comparing that to the 
bioaccumulation of the same contaminant from at least three reference sediments, to 
establish whether a statistically significant difference exists.

Alternatively, if background concentrations of contaminants within organisms are 
known, these can be used to determine the bioaccumulation ratio. For example, in 
 Australia, an extensive database has been established of metal concentrations in the oyster 
Saccostrea glomerata that inhabits the NSW–Queensland coast (Scanes and Roach, 1999; 
Robinson et al., 2005).

Bioaccumulation can be modelled (USEPA, 2000b). However, in the context of a weight-
of-evidence assessment, modelling is generally considered inappropriate beyond use in 
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screening to determine which contaminants should be included in the assessment. Simple 
equilibrium partitioning models have been useful for predicting the bioaccumulation of 
HOCs from sediments (for example, Di Toro and McGrath, 2000). Biodynamic models 
that consider the uptake and efflux rates of metals from water and dietary routes have been 
used for predicting bioaccumulation of some metals (Luoma and Rainbow, 2005). 
For accurate predictions, a strong knowledge of geochemical and biological influences on 
metal bioavailability is needed, including the effects of feeding strategies on exposure 
(Simpson, 2005; Baumann and Fisher, 2011a,b; Höss et al., 2011; Camusso et al., 2012; Yu 
et al., 2012; Proulx and Hare, 2014; Campana et al., 2015).

5.2.2 Prediction of effects
Once bioaccumulation has been established, the significance of the accumulated concen-
trations both to ecosystem health and to human health may need to be determined. Where 
bioaccumulated concentrations of a contaminant exceed maximum residue limits in 
organisms for human consumption (FSANZ, 2013), the first management action might be 
to ban the collection of the affected species, at the same time evaluating remediation 
options to remove the contaminant source by approaches such as dredging or capping. 
Assessing the risk to ecosystem health is more problematic. High concentrations of a bio-
accumulated contaminant are not necessarily linked to toxicity in an organism, and more 
detailed investigations will be needed to assess if toxicity is occurring. These investigations 
would involve other lines of evidence such as toxicity testing (Chapter  4) or the use of 
biomarkers (Chapter 6) to determine the extent to which the organism’s biological func-
tions are altered or impaired as a result of the bioaccumulation.

Organic contaminants
For HOCs, bioaccumulation can be directly related to toxicity and used as a valuable tool 
for assessing the effects of mixtures of HOCs and for developing guidelines (Meador 
et al., 2011; Burgess et al., 2013) (see also Chapter 3, Section 3.6). The bioaccumulation of 
HOCs is dependent on many factors, including exposure medium, uptake rate, metabolic 
capability, lipid content, and feeding strategy (Meador et al., 1995; Moore et al., 2005; 
Meador, 2006).

Two factors, lipid and organic carbon content, control to a large extent the partitioning 
behaviour of non-ionic organic chemicals between sediment, pore water and tissue (Ankley 
et al., 1992; USEPA, 2000b). These two factors, along with the octanol:water partition coef-
ficient (KOW), have been used in simple equilibrium partitioning (EqP) models to predict 
the partitioning and bioaccumulation behaviour of PAHs in sediments (Di Toro et al., 
1991, 2000; Meylan et al., 1999; Di Toro and McGrath, 2000).

Biota-to-sediment accumulation factors (BSAFs) and theoretical bioaccumulation 
potential (TBP) are screening tools based on equilibrium partitioning models which are 
useful for estimating the bioaccumulation of persistent non-ionic organic chemicals by 
benthic organisms exposed to contaminated sediments (USEPA/USACE, 1998; USEPA, 
2000a; Moore et al., 2005). For organics, BSAFs are typically derived using a sediment 
concentration (CS) normalised to organic carbon (fOC) and a tissue concentration normal-
ised to its lipid content (fL) (Moore et al., 2005). The TBP is the expected concentration in 
an exposed organism’s tissues and is the simplest and most easily understood model for 
estimating bioaccumulation, but it is also subject to a large degree of uncertainty (USEPA/
USACE, 1998; USEPA, 2000a). It is related to BSAF by the equation:

TBP = BSAF × (CS / fOC) × fL.
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For many HOCs, equilibrium partitioning theory provides useful relationships between 
water concentrations, bioaccumulation and toxic effects to some benthic organisms, 
although the approaches may under- or over-estimate bioaccumulation (Di Toro and 
McGrath, 2000; McGrath and Di Toro, 2009). The quality of predictions of TBP is therefore 
dependent on the choice of BSAF, and a BSAF–lipid database is available (USACE, 2014). 
The models do not consider the kinetics of processes that determine contaminant bioavail-
ability from sediments, nor contaminant retention, metabolic degradation, or elimination 
from organisms. Equilibrium partitioning approaches do not adequately consider sediment 
ingestion by marine invertebrates as a major exposure pathway (Meador et al., 1995; Kaag 
et al., 1997; Baumard et al., 1999). For deposit-feeding bivalves and worms particularly, 
sediment ingestion is a major uptake route (Kaag et al., 1997; Mackay and Fraser, 2000; 
Weston and Maruya, 2002; Meador, 2006; Maruya et al., 2012; Burgess et al., 2013). 
The equilibrium partitioning approach usually does not take into account the different 
forms of organic carbon present in sediments. Desorption kinetics of HOCs vary greatly 
depending on organic and sediment characteristics (Cornelissen et al., 1997; Hendriks 
et al., 2001; Kraaij et al., 2003). McGroddy et al. (1995) found only a fraction (0.01–0.4, or 
1–40%) of sediment-associated PAHs appears to be involved in equilibrium partitioning 
with the pore water. Thus, adsorption and desorption kinetics, which are not considered by 
equilibrium partitioning approaches for estimating bioaccumulation, may greatly affect 
partitioning and bioaccumulation.

As described in Chapter 3, Section 3.6, relationships between sediment concentrations, 
tissue concentrations and toxic effects have been used to develop mechanistic guidelines for 
many HOCs (Di Toro and McGrath, 2000; McGrath and Di Toro, 2009). An environmental 
residue-effects database (ERED) has also been developed for studies where both tissue con-
taminant concentrations and biological effects have been measured (USACE/USEPA 2015). 
The toxico-kinetics and toxico-dynamics of bioaccumulated chemicals also play a large role 
in determining if and when effects may occur, and to what magnitude (McCarty et al., 2011; 
Ashauer and Brown, 2013).

Metal contaminants
Most of the metals taken up by an organism do not bioaccumulate, but instead are 
processed internally and excreted (Wallace et al., 2003), with only a fraction of the 
metals remaining in forms that contribute to toxicity within the organism (Vijver et al., 
2004; Luoma and Rainbow, 2005; Rainbow, 2007). For most metals, this means that 
bioaccumulation data cannot be used to predict the risk of toxicity to an organism 
(Adams et al., 2011). Oysters, for example, can accumulate high concentrations of 
copper and zinc, but still function (Pan and Wang, 2012), and it has been demonstrated 
that oysters (and other bivalves) are able to sequester metals into sub-cellular non-toxic 
forms with only very small amounts of metals remaining in metal-sensitive cell compo-
nents (Wang et al., 2011).

Biota-to-sediment accumulation factors (BSAFs) were never intended for use with 
metals (Moore et al., 2005). Literature generally indicates that BSAF data for metals show 
extreme variability. Hence it is inappropriate to use BSAFs as criteria for identifying and 
classifying metals as hazards.

To use metal bioaccumulation data for the assessment of toxic effects, it is necessary 
to determine the tissue metal concentration that will cause adverse effects. The critical 
body residue (CBR) approach has been used to model dose–response relationships in 
aquatic organisms (USACE/USEPA, 2002). The strengths of the CBR approach are that 
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bioavailability, exposure to food, and accumulation/depuration rate kinetics are explicitly 
addressed. The major uncertainty of the approach is in determining a dose or response that 
is protective of ecological health (McGeer et al., 2003). Metals bind at a range of sites within 
organism tissues that have different functions, and impairment of function is the potential 
cause of toxicity within an organism (Wallace et al., 2003; Vijver et al., 2004; Rainbow, 
2007). Uncertainties in using the CBR approach have been discussed by Moore et al. (2005) 
and Adams et al. (2011).

Organisms’ body concentrations of metals may provide useful predictions of possible 
effects only if strong and clear relationships exist between bioaccumulation and biological 
effects (Borgmann, 2000; Borgmann et al., 2004; Simpson and King, 2005; Rainbow, 2007; 
Adams et al., 2011). Borgmann et al. (1991, 1998, 2001) found that chronic toxicity of Cd, 
Tl and Ni to the freshwater amphipod Hyalella azteca was a function of the total amount of 
metal accumulated, and not the total metal concentration in water or sediment. These rela-
tionships were used to calculate lethal body concentrations (LBCs) and internal effect con-
centrations (IECs). Taylor and Maher (2010, 2012a,b,c, 2013, 2014b) have shown that there 
are clear significant relationships between metal accumulation (Cd, Pb and Se) in the 
bivalves Anadara trapezia and Tellina deltoidalis and sub-lethal effects (antioxidant capacity, 
lipid peroxidation and lysosomal destabilisation). Marasinghe Wadige et al. (2014a,b) have 
shown similar relationships for the freshwater bivalve Hyridella australis. These data can 
also be used to define metal concentrations at which harmful effects can occur. For metals 
that are sequestered in non-toxic forms or are regulated over the concentration range of 
interest, the use of body concentrations to predict effects is not appropriate (Borgmann, 
2000; Rainbow, 2002; Rainbow et al., 2004). For predicting toxic effects of metals in sedi-
ments for many species, it may be more useful to understand the processes that affect the 
rate of uptake of contaminants, than to know the net bioaccumulation of contaminants 
(Rainbow, 2002, 2007; Simpson, 2005; Casado-Martinez et al., 2010).

5.3 Choice of biomonitor organism
Bivalve molluscs and oligochaetes are among the most well-established biomonitors of 
contaminants in marine and freshwater environments (Phillips and Rainbow, 1994; 
USEPA, 2000a; Robinson et al., 2005; OECD, 2007). Although used less intensively for 
biomonitoring, organisms such as amphipods, chironomids, gastropods, polychaetes, 
sponges, nematodes and others also have the required attributes to be effective biomoni-
tors (Phillips, 1977; Phillips and Rainbow, 1994; Langston and Spence, 1995; Taylor and 
Maher, 2003, 2006; Meador, 2006; Waring et al., 2006; de Mestre et al., 2012; Ding et al., 
2012; Yu et al., 2012).

Phillips (1990) has suggested that for organisms to be effective biomonitors they must be:
 ● sedentary and therefore representative of the study site;
 ● hardy and tolerant of high concentrations of contaminants;
 ● widespread and abundant in the environment being studied;
 ● easy to identify and collect, with sufficient tissue for analysis of contaminant concen-

trations; and
 ● able to accumulate higher tissue concentrations of contaminants in contaminated 

environments than in uncontaminated environments.

Lee (1998), when discussing methods for the use of marine or estuarine benthic organ-
isms for assessing bioaccumulation in sediments, suggested the following criteria: 
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 ● sediment ingester;
 ● infaunal (preferably non-tubicolous);
 ● hardy;
 ● easily collected or cultured;
 ● sufficient biomass for analysis;
 ● high bioaccumulation potential;
 ● feeding behaviour that is understood; and
 ● suitable for mechanistic/kinetic studies.

There is some commonality between the Phillips (1990) and Lee (1998) criteria. 
For metal bioaccumulation studies, an organism that ingests sediment is not always 
required. Organisms that live in sediment and feed near the sediment surface and cause 
bioturbation will take in metals in the pore waters and bacteria and algae they ingest. Thus 
these organisms can be effective biomonitors, their bodies having metal concentrations 
that reflect sediment contamination (Taylor and Maher, 2012a,b,c; Marasinghe Wadige 
et al., 2014a,b). For HOCs that are strongly bound to sediments and probably not found in 
pore waters, or that are readily transferred to biota, a sediment-ingesting organism is 
required. If bioaccumulation of contaminants from suspended sediments is to be assessed, 
for example from a dredging event, a filter-feeding organism that lives in the water column 
or attaches to a solid substrate, such as an oyster, may be a suitable test species (Edge et al., 
2014; Schmitz et al., 2015).

Organisms to be used for laboratory studies of contaminant bioaccumulation should be 
able to tolerate a range of conditions, such as of salinity and temperature. Additionally, 
species should be sufficiently tolerant of contaminants that they can survive relatively long 
exposure times, and have a low potential for metabolising contaminants (USEPA, 2000b). 
To be used as a biomonitor, an organism needs to accumulate contaminants, preferably in 
proportion to the bioavailable concentrations in sediments. This can be established through 
exposure to laboratory-spiked sediments (Taylor and Maher, 2010) or by measurements of 
organisms in situ along sediment contamination gradients (McCarthy, 1990; Luoma and 
Rainbow, 2005). The bivalves Anadara trapezia, Tellina deltoidalis and Hyridella australis, 
for example, have clear relationships of metal uptake relative to the prevailing sediment 
metal concentrations (King et al., 2010; Campana et al., 2013; Taylor and Maher, 2013, 
2014b; Marasinghe Wadige et al., 2014a,b). For HOCs there are numerous studies demon-
strating strong relationships between sediment contaminant concentrations (pore-water or 
sediment concentrations normalised to organic carbon) and bioaccumulation (Meador, 
2006; You et al., 2011; Ding et al., 2012).

When using organisms transplanted in the field or in the laboratory, it is recommended 
that bioaccumulation studies be conducted for at least 28 days (ASTM, 2010, 2013), as this 
time is believed to be sufficient for most infaunal benthic species and contaminants to 
reach steady-state tissue concentrations. This, however, is not always the case. Burt et al. 
(2007) found that 60–90  days were required for A.  trapezia to reach steady-state tissue 
metal concentrations. Many species can regulate metals or metabolise organic contami-
nants, for example PAHs (Maher and Aislabie, 1992), and may give a misleading indication 
of the bioaccumulation potential of an ecosystem. It is essential, therefore, that bioaccu-
mulation studies include one or more species with very low ability to regulate metals or 
metabolise organic contaminants.

There is general agreement that metals accumulated over long periods are concentrated 
in the muscle tissues or stored as granules, and shorter-term accumulations are 
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concentrated either in the tissues that process metals – for example, gills, hepatopancreas, 
digestive tissues, liver – or in the gut via ingested food and sediments (Phillips, 1990). 
For hydrophobic organics, accumulation is mainly in fatty tissues, so accumulated concen-
trations are usually normalised to lipid content.

Organisms that have most commonly been used internationally as biomonitors of con-
taminants in sediments (in the field) and to study bioaccumulation (in the laboratory or 
field) are shown in Table 5.1. However, a far greater range of species could potentially be 
used to evaluate bioaccumulation, provided the chosen species can be demonstrated to be 
an effective biomonitor; for example those shown in Table 5.2 for Australia. The ecology of 
all species chosen for bioaccumulation measurements needs to be fully understood so as to 
obtain interpretable results. Polychaetes, for example, have a variety of habitats within sedi-
ments and can be filter feeders, omnivores or carnivores (Waring and Maher, 2005; Waring 
et al., 2005). Not all of the organisms listed in Table 5.2 have been used to measure bioavail-
able contaminants in sediments, although organisms such as the oyster S.  glomerata are 

Table 5.1. Common organisms that have been used internationally as biomonitors of contaminants 
in sediments

Species Food sourcea Useb Organsc References

Estuarine–Marine

Polychaetes  M, O W ASTM, 2010; Lee et al., 1993, 2001; 
Millward et al., 2005; Morales-Caselles 
et al., 2008; Casado-Martinez et al., 
2013; Ramos-Gomez et al., 2011

Neanthes 
arenaceodentata

Om

Capitella capitata Non-selective 
DF, 
coprophagous

Hediste (Nereis) 
diversicolor

Om, capable 
of F

Arenicola marina Surface DF

Nereis virens Om

Bivalves M, O W ASTM, 2010; Riba et al., 2004; 
Cheggour et al., 2005; Hendozko et 
al., 2010; Tankoua et al., 2011; 
Hylleberg and Gallucci, 1975; Lee et 
al., 1993

Scrobicularia plana DF

Macoma balthica DF, F

Macoma nasuta DF

Freshwater

Oligochaetes M, O W ASTM, 2010; Higgins et al., 2007; 
Phipps et al., 1993; Mendez-Fernandez 
et al., 2013; Mackenbach et al., 2012; 
Ankley et al., 1992

Tubifex tubifex Selective DF

Lumbriculus 
variegatus

D

Amphipods and 
Midges
Hyalella azteca
Chironomus 
tentans

Selective DF M, O W Borgmann, 2000; Ingersoll et al., 
1995, 1998; Landrum et al., 2004

a Om = ominivores, F = filter feeders, D = detritivores, DF = deposit feeders.
b M = metals/metalloids, O = organics.
c W = whole organism.
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known to be useful for measuring bioavailable contaminants in suspended sediments (Edge 
et al., 2014; Schmitz et al., 2015). As physical suspension, bioturbation and uptake by micro-
organisms and algae result in multiple pathways of metal exposure, most organisms listed in 

Table 5.2. Common organisms that have been used in Australia as biomonitors of contaminants 
in sediments

Species
Food 
sourcea Useb Organsc References

Marine

Anadara trapezia 
(bivalve – Sydney 
cockle)

Om M W Jolley et al., 2004; Burt et al., 2007; 
Taylor and Maher, 2012a,b,c

Mytilus edulis  
(bivalve – mussel)

F M, O W Talbot, 1989; Haynes et al., 1995

Tellina deltoidalis 
(bivalve – deposit 
feeder)

DF M W Campana et al., 2013; King et al., 
2005; Taylor and Maher, 2010, 2013, 
2014a,b

Trichomya hirsuta 
(bivalve – hairy mussel)

F M W Lopez et al., 2014

Saccostrea glomerata 
(Sydney rock oyster)

F M, O W Hardiman and Pearson, 1995; Scanes, 
1996; Scanes and Roach, 1999; 
Spooner et al., 2003; Robinson et al., 
2005; Edge et al., 2014

Mugil cephalus  
(fish – sea mullet)

D M Mu, L, K, 
G, Go, S, H

Kirby et al., 2001a,b; Waltham et al., 
2013

Fish (assorted) H, D, 
Om, C

M Mu, R Eustace, 1974; Plaskett and Potter, 
1979; Marks et al., 1980; Roach et al., 
2008

Polychaetes F, Om, D M W Waring et al., 2006

Suberites sp. and Mycale 
sp. (sponges)

F M W de Mestre et al., 2012

Freshwater

Hyridella depressa 
(bivalve – mussel)

F M W Jeffree et al., 1993; Byrne and Vesk, 
1996; Adams et al., 1997; Adams and 
Shorey, 1998

Hyridella australis 
(bivalve – mussel)

F O W Ryan et al., 1972; Marasinghe Wadige 
et al., 2014a,b

Velesunio ambiguous 
(bivalve – mussel)

F M W Jones and Walker, 1979; Millington 
and Walker, 1983; Jeffree et al., 1993

Velesunio angasi  
(bivalve – mussel)

F M W Jeffree and Brown, 1992; Ryan et al., 
2008; Bollhöfer et al., 2011

Alathyria condola 
(bivalve – mussel)

F CY W Negri and Jones, 1995

Westralunio carteri 
(bivalve – mussel)

F O W Storey and Edward, 1989

a  Om = omnivores, F = filter feeders, D = detritivores, DF = deposit feeders, H = herbivores, C = carnivores.
b  M = metals/metalloids, O = organics, CY = cytotoxins.
c  W = whole organism, Mu = muscle, L = liver, K = kidney, G = gills, Go = gonads, S = stomach, H = heart, 

R =  reproductive organs.
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Tables  5.1 and  5.2 will be appropriate for assessing the bioaccumulation of metals. 
For assessing organics that are strongly bound to sediment particles and not likely to be 
easily re-mobilised or taken up by microrganisms, and/or for algae, it is best to use organ-
isms that ingest sediments, for example polychaetes or oligochaetes.

5.3.1 Contaminant-specific considerations

Metals
Bioaccumulation of metals in molluscs and other organisms is influenced by physiological 
factors including age, growth, gender, reproductive condition and genetics. Sampling strate-
gies should aim to minimise the effects of these factors in bioaccumulation studies (for 
example, comparing organisms of similar age and gender). Sediment properties, redox poten-
tial, pH, salinity and temperature are factors that affect metal bioavailability (Brown and 
Depledge, 1998). These factors also influence the physiological activity of organisms through 
their effects on metabolic rates (Frazier, 1976). It is necessary to understand the effects of all of 
these factors on metal accumulation in organisms because they may lead to variations in 
tissue metal concentrations that if not accounted for will make results difficult to interpret.

It has been established that the tissue metal concentrations may vary with mass and 
size of molluscs (Taylor and Maher, 2003). Temporal fluctuations in mass and metal body 
burdens may also occur (Robinson et al., 2005; Taylor and Maher, 2006). For some organ-
isms, tissue metal and metalloid concentrations can remain relatively constant – selenium 
for example – suggesting that the organisms have reached equilibrium with their environ-
ment (Taylor and Maher, 2012c).

Many studies have found a trend of decreasing tissue metal concentrations with 
increased tissue mass (Boyden, 1977; Lobel et al., 1991; Langston and Spence, 1995) 
although this does not always occur (Cubadda et al., 2001). This ‘dilution effect’, where 
growth dilutes the metal content, appears to be a common phenomenon in molluscs. It is 
also postulated that where mass is independent of tissue metal concentration, there may be 
some form of regulation of uptake and excretion (Phillips and Rainbow, 1994). An exami-
nation of data comparing mass and metal concentration shows that a minimum of three 
orders of magnitude in mass is required before a significant relationship between mass and 
tissue metal concentration is evident in bivalves.

Age may also influence metal concentrations: older organisms show less variability, 
probably because of high metabolic activity in juveniles. Robinson et al. (2005) found there 
was less variability between individual oysters’ metal concentrations once they entered 
adulthood, and suggested that this is due to biochemical changes occurring during rapid 
faster growth in juveniles. For testing, collection of mature individuals would reduce the 
within-sample variability, but size is not necessarily a good indicator of age and therefore 
often it is not possible to sample mature individuals.

Genetic differences may cause an overlap in the distributions of tissue metal concentra-
tions in contaminated and uncontaminated locations. In other words, individuals from a 
contaminated environment may accumulate lower metal concentrations than individuals 
from uncontaminated environments (Taylor and Maher, 2003). It appears, for example, that 
some molluscs may take up metals at a lower rate, or they may have enhanced regulatory 
mechanisms (Lobel et al., 1982, 1991).

Gastropods from contaminated sites had a higher degree of individual variability in metal 
concentrations than those from an uncontaminated site in studies by Taylor and Maher 
(2003). Positive skewness in the distributions of metal concentrations occurs in populations of 
gastropod and bivalve molluscs from both contaminated and uncontaminated environments 
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(Taylor and Maher, 2003; Robinson et al., 2005). Although some individuals from contami-
nated environments accumulate lower concentrations of metals than individuals in an uncon-
taminated environment, the majority do not. At the individual level there can be a large range 
in tissue metal concentrations, while at the population level the distributions are separate 
(Taylor and Maher, 2003). Some individuals may either be taking up less metal or have 
enhanced excretory mechanisms, and others are accumulating excessive quantities of metals, 
but the majority of the population falls somewhere in the middle. These results (Taylor and 
Maher, 2003; Robinson et al., 2005) could not be explained on the basis of either mass or 
gender or habitat differences. Skewness seems to be a common factor in sample distributions 
of natural populations because of the natural variation between individuals. Collecting greater 
numbers of controls/reference organisms may help inform the test laboratory about skewness 
and improve the power of the study in determining if differences between populations are 
significant. In summary, molluscs will reflect the levels of biologically available metals of their 
respective environments, and, in the contaminated environment, they are net accumulators. 
Variances usually increase as mean metal concentrations increase.

Significant differences found in metal concentrations due to gender, where they exist, 
have been thought to be associated with spawning (Lobel et al., 1991) because metal con-
centrations vary as mass fluctuates when oocytes are produced and shed.

Collecting organisms that are at different stages of spawning may also contribute to 
differences between individuals and hence overall variability (Simpson, 1979; Cossa et al., 
1979). The use of triploid oysters, which do not reproduce, has been shown to considerably 
reduce variability in observed metal concentrations (Robinson et al., 2005).

Organics
For non-ionic HOCs, the lipid content of an organism is an important factor in its con-
taminant uptake and storage. Lipid content can vary considerably within a single species, 
based on life stage, gender, sexual maturity and season, and this will affect the bioaccumu-
lation of organic contaminants (Moore et al., 2005).

Organic contaminant concentrations are likely to vary with mass and size of molluscs 
(USEPA, 2000). Greater mass and size are often a reflection of age and it would be expected that 
older organisms would have had longer exposure times and exhibit greater contaminant con-
centrations. Gender can also be expected to have significant effects on organic contaminant 
concentrations. For example, during spawning there are fluctuations in the mass of an organism, 
especially its gonads (Meador et al., 1995). Collection of organisms that are at different stages of 
spawning would contribute to differences observed between individuals and hence overall vari-
ability (Bruner et al., 1994, Meador et al., 1995).

Genetic differences may also accentuate the individual variability in organic contami-
nant concentrations which occurs in natural populations and skews the natural distribu-
tions of contaminant concentrations.

Organic contaminant content can fluctuate through time, related to an organism’s 
feeding behaviour and reproductive cycle. Many organisms feed more extensively and 
grow more rapidly during warmer periods (for example in summer) and thus lipid content 
may be greater at these times than at other times when lipid reserves are used. As well, 
lipid content can increase as gonadal tissues grow. On spawning, this gonadal material will 
be lost (Bruner et al., 1994).

Selection of sample size
When comparing locations, it is important to select a large enough sample size to gain 
a true estimation of the mean bioaccumulated contaminant concentrations and to allow 
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concentration differences to be detected. Inherent variability existing in organism popula-
tions may obscure trends and lead to incorrect conclusions. Sample size calculations are 
relatively easy to perform (Zar, 1984), but the concentration differences required to estab-
lish social or environmental significance are a management decision. Three simple proce-
dures can be used to calculate sample size:

 ● sub-sampling the dataset using a random number table to determine the number of 
replicates required to obtain a value within 10% of the population mean (Taylor and 
Maher, 2003);

 ● using the means and standard deviations of contaminant concentrations and 
 Student’s t tables as outlined by Zar (1984) (Taylor and Maher, 2003);

 ● using bootstrap analysis of metal concentration data to obtain the 95% confidence 
interval for discrete sample sizes (Robinson et al., 2005).

For oysters, for example Saccostrea glomerata, and gastropods, for example  Austrocochlea 
constricta and Bembicium auratum, although the inherent variability is large, only 10 
samples need be analysed to obtain an estimate of the mean concentration within ±10% of 
the population mean (Taylor and Maher, 2003; Robinson et al., 2005). This sample number 
should allow changes of 30% from the mean contaminant concentration to be detected.

Many studies have used pooled samples (that is, they combine multiple individual 
samples to provide a composite) to reduce variability and reduce analysis costs. The disad-
vantage is that information on contaminant variability is lost. If subtle changes in bioaccu-
mulation are occurring they are often seen as increases in contaminant variability rather 
than increases in means. As well, skewing of the means of contaminant concentration can 
occur if a few samples contain high concentrations of contaminants, especially metals. 
This cannot be detected if pooled samples are used.

As a consequence of the above, when collecting organisms, attention should be given to 
the following factors to minimise variability and aid in interpretation of results.

 ● Mass. Organisms of similar mass and size should be selected from all locations. 
A regression analysis should be used to establish that tissue contaminant concentra-
tions are independent of mass (or size). If mass or size dependence is established, 
then concentrations should be normalised to a chosen mass.

 ● Gender. Most studies have found that gender per se is not a large contributor to 
metal concentration variability; but known periods of spawning should be avoided 
because contaminants may be lost during this time. For HOCs, gender differences 
may be associated with lipid content differences and collection should be standard-
ised to female or male organisms.

 ● Genetics. Inherent variability appears to be a ‘universal characteristic’ of contami-
nant concentration distributions particularly in molluscs; thus sufficient replicate 
samples should be collected to account for this variability. All measured contami-
nant concentrations should be used in statistical analyses because high contaminant 
concentrations at uncontaminated locations are not outliers.

 ● Accumulation of chemicals of interest at contaminated and uncontaminated loca-
tions. Preferably, organisms should accumulate contaminants in direct proportion to 
the contamination in sediments. If organisms are to be used as biomonitors, it must 
be established that these organisms accumulate higher tissue concentrations of con-
taminants in contaminated environments than in uncontaminated environments.

 ● Temporal variation. For comparison purposes, organisms from contaminated and 
uncontaminated locations need to be collected after similar exposure periods and at 
similar times.
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 ● Sample size. Sample size needs to be large enough to produce a true estimation of the 
mean contaminant concentrations and to allow concentration differences to be 
detected. Sample size calculations are relatively easy to perform (Zar, 1984), but con-
centration differences required to reveal social or environmental significance are a 
management decision. Where there is insufficient mass of organisms to provide a 
large enough sample, pooling of samples is an option, noting the limitations dis-
cussed earlier.

5.3.2 Choice of tissues or sub-cellular fractions to be measured

Metals
Bioaccumulated contaminants will be distributed within the test organism, depending on 
the major route of uptake, the site and mechanism of storage, and the mechanism of excre-
tion. The distribution is very significant for assessments because it is now recognised that, 
for example, metals bound at different sites have different functions, and impairment of 
function is the potential cause of toxicity within an organism. Thus, organisms in the field 
that have been accumulating metals for a long period may be storing most of the metal in 
a detoxified form. Toxic effects are elicited when a critical dose of a chemical is reached in 
one or more sensitive compartments of the organism, or toxicity may take effect if the 
metabolically available concentration exceeds a threshold concentration, or if the metal 
influx rate exceeds the combined rates of detoxification and excretion (Rainbow and 
Luoma, 2011).

Most dietary-derived metals are processed in the gut and then accumulated inter-
nally and stored in the hepatopancreas or other tissues as granules; they may be excreted 
via the liver. Metals taken up directly from the water column are concentrated in the 
gills, hepatopancreas and mantle. Excretion may occur by a range of processes: via 
direct egestion, excretion through the gills, or via the liver (Luoma and Rainbow, 2008). 
While for most applications the data from the bioaccumulation line of evidence will be 
based on whole body concentrations, more detailed examination of tissue distribution 
can add value.

In bivalves, the distribution of a metal at the sub-cellular level can be measured in the 
gill and hepatopancreas to determine metabolically active and detoxified metal fractions, 
and used to interpret biological effects (Taylor and Maher, 2010). Biological effects are 
related to the threshold concentrations of metabolically-available metals and not to total 
accumulated metal concentration (Rainbow, 2002; Vijver et al., 2004; Simpson and King, 
2005). A scheme for separating operationally defined sub-cellular fractions in molluscs is 
given in Fig. 5.1. Typically, information can be gathered on five major sub-cellular fractions 
of metals within organisms: 

 ● metal-rich granules (MRG); 
 ● nuclei and cellular debris; 
 ● organelles (ORG), including mitochondria, microsomes and lysosomes; 
 ● heat-denaturable proteins (HDP), also referred to as heat-sensitive proteins; and 
 ● metallothionein-like proteins (MTLP), also referred to as heat-stable proteins. 

The biologically active metal fraction (BAM), which combines ORG and HDP, is the 
target of attack of metals in cells, and a biologically detoxified metal fraction (BDM), 
which combines MRG and MTLP, is considered to alleviate toxicity.
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Thus consideration should be given to:
 ● selection of tissues; for general monitoring purposes analysis of whole tissues is suf-

ficient. If a deeper understanding of the pathway of contaminant uptake is required, 
individual tissues need to be analysed to ascertain the route of uptake. Metals such 
as cadmium and zinc found accumulated in gill tissues, for example, are generally 
attributed to water, while metals/metalloids such as Se, Hg and Pb found accumu-
lated in digestive tissues are from food;

 ● need for sub-cellular fractionation; if the focus is on relating bioaccumulated con-
taminants to effects, then measuring contaminants (for example metals in sub- 
cellular fractions) provides additional information for understanding the mechanism 
of toxicity. This information can also be used to explore the transfer of contaminants 
from prey to predator organisms if food web interactions or ecosystem questions 
relating to contaminants are being explored.

Organics
For bioaccumulated organic contaminants, a major limitation is analytical detection. 
A requirement is that the tissue mass be sufficient for chemical analyses (Exponent, 1998). 
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Figure 5.1. Procedure for sub-cellular fractionation of bivalve tissues by differential centrifugation. 
The shaded boxes show details of the centrifugation and digestion or heating steps used to obtain 
the specific fractions. The final fractions – four pellets P2, P3, P4 and P5 and two supernatants S2 and 
S5 – are grouped as: biologically detoxified metals (BDM) P2 and S5; and biologically active metals 
(BAM) P3, P4 and P5; or as S2 which contains metal associated with dissolved tissues (Taylor and 
Maher, 2012b). MT = metallothionein.
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The analysis of the concentrations in specific tissues will therefore be restricted to larger 
organisms such as fish. Only where the concern is for human health effects would tissues 
be sub-sampled to reflect the concentrations of contaminants in the parts that are 
consumed. Additionally, specific organs might be sampled where the mechanism of bioac-
cumulation is a concern (Bruner et al., 1994; Meador et al., 1995). For a weight-of-evidence 
assessment, because HOCs associate with lipid tissue, it is usual to use only the whole 
organism for analysis. Bioaccumulated concentrations are usually expressed on a wet 
weight basis or normalised to lipid content.

Methods used for lipid analysis have been summarised by Schlechtriem et al. (2012).

5.4 Choice of approach

5.4.1 Field collection versus transplantation studies
There are three approaches that can be used to assess contaminant bioaccumulation in 
field or laboratory experiments:

(i) passive biomonitoring: the measurement of contaminant concentrations in indig-
enous organisms;

(ii) field transplantion (active biomonitoring): where organisms are transplanted into 
contaminated environments and their contaminant concentrations are measured 
after a specified time;

(iii) laboratory transplantion (active biomonitoring): where organisms are transplanted 
into microcosms containing contaminated sediments in the laboratory and their 
accumulated concentrations are measured after a specified time.

Each approach has advantages and disadvantages. Passive biomonitoring requires 
organisms to be present at the sites of interest in sufficient numbers for statistical analyses. 
Contaminant concentrations will reflect exposure over the lifetime of the organism and 
will account for population adaptation to contaminated environments, so may exhibit 
fewer effects. A disadvantage is that organisms will be genetically different, introducing 
some inherent variability into contaminant concentrations.

Field transplantation allows genetically similar organisms to be put into depauperate 
environments and for the uptake of contaminants to be measured in absolute terms, and 
rates of uptake calculated. Organisms are also subject to real environmental variability (tem-
perature, pH, dissolved oxygen, redox potential and food) that may influence the uptake of 
contaminants. A limitation is that organisms will not have adapted to contaminated environ-
ments and uptake, and effects may be greater than for indigenous organisms. Another limi-
tation is the lack of security when deploying caged organisms in populous areas.

Laboratory transplantation also allows the uptake of contaminants to be measured in 
genetically similar organisms, in absolute terms, and rates of uptake to be calculated. 
The major limitations are that organisms will not be subject to real environmental vari-
ability and will experience potentially artificially elevated contaminant exposure via the 
overlying water, and so the study may over- or under-estimate uptake. As well, sediment 
properties influencing contaminant variability (for example pH, dissolved oxygen, redox 
potential) may be affected by removing sediments from their natural environment, so 
sufficient time for their re-equilibration (7–10 days) is required. The main advantages 
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are the security that the laboratory setting gives, and the opportunity to control extrane-
ous variables.

5.4.2 Study design and statistical analysis
The three approaches are illustrated in a study using the bivalve Anadara trapezia to 
measure the bioaccumulation of metals from contaminated sediments. This study focused 
on the estuarine Lake Macquarie, New South Wales (NSW), Australia. Similar protocols 
would be employed for the determination of HOCs in bivalves or other biota.

Lake Macquarie, NSW, Australia – an example
Industrial development around Lake Macquarie (Fig.  5.2) is extensive and consists of a 
decommissioned lead–zinc smelter, a fertiliser plant, a steel foundry, collieries, sewage 
treatment works and two coal-fired power stations. The lake supports a large recreational 
fishery and is also of ecological significance, providing breeding and nursery grounds for 
many commercial fish species. In comparison to other NSW estuaries, Lake Macquarie 
has significantly higher concentrations of metals, particularly lead and the metalloid 
selenium, in its sediment (Roy and Crawford, 1984; Peters et al., 1999b; Kirby et al., 2001b). 
The lead–zinc smelter to the north of the lake was in operation between 1897and 2003, and 
is a known source of Zn, Se, Cd and Pb (AWACS, 1995). There is a clear contamination 
gradient for Cu, Zn, Cd and Pb in the northern part of the lake (Burt et al., 2007). Metal 
concentrations above background levels in the southern reaches and selenium hot spots 
near power stations indicate that the coal-fired power stations are also contributing 
selenium and metals to the lake (Peters et al., 1999a).

The locations in Lake Macquarie from which indigenous organisms were collected and 
which were used for field and laboratory sediment transplant experiments are indicated in 
Fig. 5.2. Lead concentrations in sediments at these locations are shown in Fig. 5.3, together 
with values for three reference locations. The Sydney cockle, Anadara trapezia, was chosen 
for assessing bioaccumulation and effects because it is a sediment-dwelling organism 
native to Lake Macquarie and has been shown to accumulate metals in areas where sedi-
ments are contaminated with metals (Furner, 1979; Batley, 1987; Burt et al., 2007).

Field sampling (passive biomonitoring) 

Experimental design principles
A typical field study will collect organisms from several locations to assess and rank bioac-
cumulation. If only one location is of interest, this location will need to be assessed relative 
to at least three reference locations. Replication within locations (‘sites’) is required to enable 
statistical analysis. Thus studies will need to be designed to enable a two-factor nested 
analysis of variance (‘factors’: location and site). Locations are the general areas of sampling; 
sites are specific areas at least 100 m apart, randomly chosen within locations for sampling. 
Typically 10–20 organisms are collected by hand for analysis at each site.

Study sites, results and analysis
Maher et al. (1998, unpublished data) collected A.  trapezia from four locations in the 
northern part of the lake (Fig.  5.2) and three reference locations in nearby estuaries 
(Bagnalls Beach, Tea Gardens and Smiths Lake). Lead concentrations in whole tissues were 
significantly different among locations within the lake, with mean concentrations 

© CSIRO 2016. All rights reserved.



Sediment Quality Assessment138

Cockle Creek 1

Cockle Creek 2

Cockle Bay Warners Bay

KoorooraBay

Eraring BayWhiteheads Lagoon

0 2.5 5 10

Kilometres

Legend

N

Figure 5.2. Map of Lake Macquarie NSW. The seven study locations were Cockle Creek 1, Cockle 
Creek 2, Cockle Bay, Warners Bay, Kooroora Bay, Eraring Bay and Whiteheads Lagoon. The lake is 
connected to the Pacific Ocean at Swansea.
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Figure 5.3. Concentrations of lead in sediments of Lake Macquarie and reference locations.
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decreasing in the order Cockle Bay > Warners Bay > Kooroora Bay > Eraring Bay, and 
greater than at the three reference locations (Fig. 5.4). The bioconcentration factors were 
33, 12, 9 and 3 for cockles collected from the respective sampling locations.

Field transplantation

Experimental design principles
Studies with caged organisms in the field need to be designed to allow a four-factor nested 
analysis of variance (factors: time, location, site and cage). Locations are the general areas of 
sampling; sites are specific areas within locations, at least 100 m apart and randomly chosen 
for cage deployment. A typical design might consist of three sampling times (30, 60 and 
90 days), three or four locations (including control), two sites nested in each location and 
two cages nested in each site. The design can be simplified by choosing one time – typically 
60 days for A. trapezia, and 28 days for other bivalves. If a time component is included, at 
least two randomly chosen cages need to be retrieved at each time from each site, nested 
within the locations. Organisms to be caged are collected from a reference location and 
transported in a portable cooler box containing sediment and water from the collection site 
and an aquarium air pump to aerate overlying water during transportation and maintain 
ambient temperature. Typically 10–20 organisms are placed in each cage.

Choice and deployment of cages
Previous studies (Cain and Luoma, 1990; Martinčić et al., 1992; Couillard et al., 1995; 
Dewitt et al., 1999) have concluded that cages per se have no treatment effects. The cages 

0

2

4

6

8

10

12

14

Bagnalls
Beach

Tea
Gardens

Smiths
Lake

Cockle
Bay

Warners
Bay

Kooroora
Bay

Eraring
Bay

Whiteheads

L
ea

d
, µ

g
/g

Figure 5.4. Concentrations of lead in tissues of indigenous Anadara trapezia from Lake Macquarie 
and reference locations.
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may need to be deployed by Scuba divers, depending on the water depth at the sites of 
interest. In design, the cages should:

(i) be large enough to hold the number of organisms required, with adequate access to 
sediments;

(ii) allow flow-through of water;
(iii) be of non-contaminating materials; typically, plastic oyster cages have been used 

(see Fig. 5.5); and
(iv) be secured to avoid predation and escape of organisms; oyster trays with netting 

have been used for this purpose (Fig. 5.5).

A consideration, based on the question to be answered, is whether cages are to be buried 
in sediments or placed on the sediment surface. If cages are buried in sediments, organisms 
will be exposed to metals through ingestion (sediment particles and food), dermal absorp-
tion and metals released by bioturbation. If cages are placed on sediments, organisms will 
only be exposed to metal through ingestion of food and metal fluxes.

The organisms chosen will also influence how cages are deployed. Most oysters and 
mussels are filter feeders and do not have to be in sediments. Other organisms, such as 
A. trapezia and Ostrea angasi (mud oyster), live in sediments and need to be able to bury 
themselves to function. Tellina deltoidalis is a deposit feeder and feeds from the sediment, 
so also requires sufficient sediment to burrow and feed.

A period of 60–90 days is sufficient for A. trapezia to reach equilibrium with their envi-
ronment (Burt et al., 2007), but this equilibration period needs to be determined for each 
species of organism chosen. Individual cages and organisms needed to be marked (for 
example using adhesive numbers) to allow an assessment of the condition of the organisms 
(mass:volume ratio) at the end of the deployment period.

Figure 5.5. Field transplantation cage, about 60 cm × 40 cm × 10 cm. © CSIRO 2016. All rights reserved.
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To avoid vandalism, cages need to be fully submerged to at least a depth of 1 m with no 
visible markers. To retrieve the cages, the locations need to be accurately known. A simple 
method of achieving this in shallow waters near the shore is to attach two ropes to known 
points on the shore and use these to triangulate the cage positions. In deeper waters, a GPS 
device may be needed to locate cages.

Study locations, results and analysis
Burt et al. (2007) and Taylor and Maher (2011 unpublished) transplanted A. trapezia to 
seven locations in Lake Macquarie (Fig. 5.6). Lead concentrations in whole tissues reached 
a maximum after 2 months and were significantly different among locations. Mean lead 
concentrations decreased in the order Cockle Creek 1 > Cockle Creek 2 = Cockle Bay > 
Warners Bay > Kooroora Bay > Eraring Bay > Whiteheads Lagoon and were significantly 
higher than the reference locations Bagnalls Beach, Tea Gardens and Smiths Lake (Fig. 5.6). 
The bioconcentration factors were 67, 41, 42, 18, 9, 6 and 3 at the respective locations, and 
were similar to those of indigenous A. trapezia.

Laboratory transplantation – microcosm exposure

Experimental design principles
A typical laboratory study will compare the bioaccumulation of metals by organisms in labo-
ratory microcosms using sediments collected from a gradient of contamination (minimum 
three sites). Again, if only one location is of interest, this location will need to be assessed 
relative to at least three reference locations. Replication within locations is required to enable 
statistical analysis. Studies need to be designed to enable either a one-way (factors: location 
and replicates) or a two-way analysis of variance (factors: location, time and replicates).

Sediment, seawater and organism collection
Sediments are collected with a stainless-steel spade and press-sieved through a 2 mm stainless-
steel mesh to remove rocks, large pieces of organic material and organisms. The sediments are 
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Figure 5.6.  Concentrations of lead in tissues of Anadara trapezia field-transplanted in Lake 
Macquarie and from reference locations.
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placed in a series of plastic buckets with lids and sealed with tape for transport. Sediments can 
be stored at 4°C for up to 2 months. Before use in experiments, the sediments are sub-sampled 
for analysis of metal concentrations, to determine metal exposures. Moisture content, salinity, 
pH and sediment grain size are also measured to establish the physico-chemical properties of 
both the control and the test sediments. Properties of control and test sediments should be 
closely matched to ensure the results for contaminant dose and effects are not influenced by 
physico-chemical factors, rather than the contaminants of interest. 

Seawater is collected from uncontaminated coastal waters and adjusted with deionised water 
to match the salinity of locations where test organisms are being collected: usually 30 ± 2‰. 

Test organisms are collected from reference locations and placed in portable cooler 
boxes containing sediment and water from those sites, with aquarium air pumps to aerate 
overlying water during transportation and maintain ambient temperature. The organisms 
are maintained in aquaria, with control sediments 10  cm deep and water of the same 
salinity as the collection site, for up to 2  weeks to acclimatise before experimentation. 
Overlying waters are aerated using in-line control valves on air hoses to achieve ≥85% 
oxygen saturation without disturbing sediments. Water temperature is maintained at 
22 ± 1°C and the photoperiod is 14-h light : 10-h dark. If ambient water temperatures at the 
time of collection are 10 ± 5°C cooler or warmer than 22 ± 1°C, the water temperature of 
the holding tanks is adjusted gradually by 2 ± 0.5°C per day until the experimental tem-
perature is reached. A 3-day feeding/half water-change cycle is maintained during the 
acclimatisation period using a suitable supplementary food such as the unicellular green 
algae Nannochloropsis preparation (Nanno 3600, Instant Algae®, USA).

Laboratory microcosms
Typical microcosms are 10–12 L glass or polystyrene containers or aquaria containing 1000 g 
of wet sediment (with a minimum of 20% <63 µm fraction) and 8–10 L of seawater (Fig. 5.7). 
Overlying waters are aerated using in-line control valves on air hoses to achieve ≥85% oxygen 
saturation without disturbing sediments. As in the holding tanks, water temperature is main-
tained at 22 ± 1°C and the photoperiod is 14-h light : 10-h dark (3.5 µmol photons/s/m2).

Study, results and analyses
Taylor (2009) used microcosms to expose A. trapezia to sediments collected from three 
locations in Lake Macquarie, representing a sediment lead gradient (Cockle Creek sites 1 
and 2 and Cockle Bay; Fig. 5.3). Three replicate microcosms of each treatment and of the 
control sediment were set up, each containing 15 A. trapezia. Organisms were exposed to 
the sediments for a total of 60 days.

Anadara trapezia accumulated lead from the three exposure treatments compared to 
the control organisms (Fig. 5.8), indicating that lead in the sediment was bioavailable and 
could be accumulated by this organism. After 60  days, tissue lead concentrations were 
significantly different between locations. Regression analysis showed significant positive 
correlations between lead concentrations in A. trapezia whole tissue and sediments from 
Lake Macquarie. The bioconcentration factors were 139, 50 and 35, which was higher than 
in transplanted and indigenous A. trapezia from the same locations in Lake Macquarie.

Comparison of approaches
Comparison of the assessment procedures shows that the collection of indigenous organ-
isms and use of transplantation gave similar results for the bioaccumulation of lead in 
A. trapezia. The laboratory accumulation experiment gave results similar to those from the 
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other approaches, except for the sediment with the highest lead concentration. Although 
the laboratory results did not exactly replicate the field results, they did provide a consistent 
ranking of locations in terms of potential bioaccumulation of lead.

5.5 Sample collection, preparation and analysis 

Sediment-dwelling organisms
Species that live buried in sediment, such as polychaetes and some bivalve molluscs, are 
obtained by sieving. The top 10–20 cm layer of sediment is collected, using a stainless-steel 

Figure 5.7. Laboratory microcosm exposure set-up.
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Figure 5.8. Concentrations of lead in tissues of Anadara trapezia in the laboratory microcosm study.
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shovel, and either a 2 mm- or 1 cm-mesh stainless-steel sieve is used to separate the organ-
isms (depending on organism size).

Organisms that live at the sediment surface can be collected by hand, wearing plastic 
gloves and locating the bivalves by gently sweeping the fingers through the surface sedi-
ments. Extraneous material adhering to mollusc shells is removed by gently scrubbing the 
shell with a nylon brush and rinsing it in collection water.

Live specimens are transported in a portable cooler box containing sediment and water 
from the collection site. An aquarium air pump is used to aerate overlying water during 
transportation and to maintain ambient temperature. For organisms used in laboratory-
uptake studies, the field-collected organisms are held in aquaria for up to 2 weeks to accli-
matise before experimentation.

Before being analysed for contaminants accumulated at their indigenous location in 
the field, all organisms normally should be depurated for at least 24  h in clean aerated 
water from the location where they were collected. If organisms are not depurated, con-
taminants in gut contents that have not been taken into the organisms’ tissues (that is, have 
not bioaccumulated) will be included in analyses. Organisms are only not depurated when 
an estimate of total contaminants consumed by predators (and humans) is required.

After depuration, organisms such as polychaetes are frozen and stored at –20°C until 
analysis. For molluscs, soft tissue is removed from shells and either whole organisms or 
individual tissues are frozen and stored at –20°C until analysis.

Fish
For sediment assessments, only fish species that are bottom feeders are used. These species are 
directly affected by sediment particles, pore waters and ingested benthic biota. Fish are collected 
using nets or electrofishing, and need to be killed by passing a needle into the brain (‘pithing’). 
They are stored individually in sealed plastic bags before freezing on-site using dry ice.

Fish are dissected using stainless-steel dissecting implements. Selected tissues are 
removed, placed in plastic vials and frozen at –20°C until analysed.

Individual versus composite samples
As mentioned previously, many studies use pooled tissue samples from several individual 
samples (whole organisms or individual tissues) to reduce variability and reduce analysis 
costs. The disadvantage is that information on contaminant variability is lost. If subtle 
changes in bioaccumulation are occurring, these are often seen as increases in contami-
nant variability rather than increases in means.

Metals
For analysis of metals, the tissue and sediment samples are normally freeze-dried and ground. 
Sub-samples are typically digested with concentrated acids (for example, nitric acid or aqua 
regia) using microwave heating (Baldwin et al., 1994) and the digests are analysed by induc-
tively coupled plasma mass spectrometry (Maher et al., 2001). The recovery of metals from 
relevant certified reference materials (CRMs) can guide the choice of acid mixture.

Organics
Unlike metals, for organics there are particular procedures for extraction, concentration 
and analysis specific to the organic contaminant of interest, and measurement of lipid 
content is also often useful. It is outside the scope of this document to provide details of 
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these methods; guidance should be sought from qualified analysts with experience in ana-
lysing the organic contaminant of interest.

Quality assurance/quality control 
Digestion, extraction and measurement processes are all subject to errors, including con-
tamination, degradation, matrix effects and calibration errors. Certified reference materi-
als are available to assist in quantifying full procedural errors (see Chapter 3, Section 3.4). 
In the absence of CRMs, inter-laboratory studies also provide a means of assessing the 
quality of results. For a full discussion of quality assurance/quality control procedures 
consult the Australian guidelines for water quality monitoring and reporting (ANZECC/
ARMCANZ, 2000).
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