NOTICE: This is the author’s version of a work that was accepted for publication
in Agent-Based Models of Geographical Systems, 2012. Heppenstall, Alison J;
Crooks, Andrew T, See, Linda M; Batty, Michael, Eds. Changes resulting from the
publishing process, such as peer review, editing, corrections or structural
formatting may not be reflected in this document. The final publication is
available at www.springerlink.com

Large scale agent-based modelling: a review andiegjnes for model scaling.

H. R. Parry and M. Bithelf

INTRODUCTION ...t e b e s s b e a e s b e s 3
REVIEW OF LARGE-SCALE MODELLING TECHNIQUES......... oo, 3
MODEL SOFTWARE RESTRUCTURING: ‘SUPER-INDIVIDUALS’cccooiiiiiiiiiiieie 4
MODEL SOFTWARE RESTRUCTURING EXAMPLE: SPATIAL SUPER -INDIVIDUALS.....6

TEMPORALRESULTS ...ttt ettt ettt ettt e e e ettt et e et e e e e e e e e e e sbeban e e e e e reeeees 6
SPATIAL RESULTS ..ttt ettt ettt ettt e e e e e e et oo e ettt et e e e e e e e e aaa e e nbabbtbbn e e seereeeeeas 7

MULTI-CORE ARCHITECTURES. ... tteutteitteatttautteaseasteeaseeasseasaasessssessseaasesaseasassanseansessnessssesnsnsasens
GRAPHICSPROCESSINGUNITS (GPUS) ...ttt e s st e e e nntae e e s nnees
CHALLENGES OF PARALLEL COMPUTING.
THE ‘A GENT-PARALLEL’ APPROACH.eettttttateateaueeanteanteasteesseaaaeaasesanseaaseaaseasseaaseesnseanseesnnsssns
THE ‘ENVIRONMENT-PARALLEL" APPROACH.etuttettteattiatteaaeeaaueeaseeaaeasseaasasseessessseeanseaaseassessneas 11

PARALLEL COMPUTING EXAMPLES: ‘AGENT-PARALLEL’ AND * ENVIRONMENT-
PARALLEL APPROACHES.ooiiiii e 12

EXAMPLE OF THE USE OF ANAGENT-PARALLEL APPROACH........uttttieiiieniieitiesieesieeeise e snee e
EXAMPLE OF THE USE OF ANENVIRONMENT-PARALLEL APPROACH
a) Balancing loadsin the spatially decomposed case...
b) Dealing with non-local agent iNteraCtionScccveveiererirereerese e es

POTENTIAL EFFICIENCY GAINSoooiiiiiii s 25

MODEL SPEED AND INCREASING NUMBERS OF AGENTS...cccttttiittiiiiiiiiiiiiiiiiineeeeieeeeeaeeen e
MODEL MEMORY USE AND INCREASING NUMBERS OF AGENTS.....c.cvvviiiiiieeeeeeeenns
HOVERFLY-APHID MODEL ENVIRONMENT-PARALLEL PROGRAMMING EFFICIENCY..

GUIDELINES FOR AGENT-BASED MODEL SCALING.......... e 29.

A PROTOCOL ¢ttt et e ettt e e e e e e e e ettt etttk e s e o2 e e e e e e eeee e bb e e e e e e e eeeee e bbb e e e e e e e eeeeeeennraa e aaaaan 29
ACKNOWLEDGEMENTSoiiiiiiiiiiiiii s30
GLOSSARY L. 30
REFERENCES ... st saae e 33
APPENDIX: RULES FOR HOVERFLY SUB-MODELcooiiiiiiiiiiiiiiccccec s 38

DEVELOPMENT ...ttt e ettt e e e e e e e e e e e e et ae et e e e e e e e eeesnnbsnanneaaaaan
IVIORTALITY ottt ettt ettt e e e e e e e e e e s e e e bbb et e e et e e eeeeeeesananas

MOVEMENT AND DISPERSALcttttttuuuuaeaeeaeeeseesunannaaeeseesaeseasssssnssnnssaasaaseeesssssnnnnnnnns ...38
BASIC MOVEMENT ...ttt et e ettt s e e e e e e e e e e e e et ete bbb e e e e e e e e eeeeebbaa e e e aaeeaaeeeesenbnnnnnaaaaaans 39
FORAGING OPTIMISATIONiiiiieetiiitiaeaeeeeaeeeeessatsa s s s aaeaaeaeaaeesessbaaaanaeeaeaaeesanssnnnaaaaeaaaeaaeseeeennen 39
PARASI TATION/PREDATIONtttttesiuttteeeessttteeeeessnsteeeaee st baeeasssstseeaessansbeeeessnssnneeessannseeeesssnneeessnee 39

CSIRO Entomology, Canberra, Australia
Department of Geography, University of Cambriddk,

Introduction

In agent-based simulation, the term ‘large scadéens not just to a simulation that
contains many agents, but also refers to the pmoldemanaging the complexity of
the simulation (Parry 2009). Agent-based modeks iaherently complex, thus

models that push the limits of resources due to thege numbers of agents or their
complexity may be referred to as ‘large scale’. othrer term also used for such
simulations is ‘Massively Multi-agent Systems (MMA®r ‘Massive Agent-based

Systems (MABS)' (Ishidat al., 2005; Jamalét al., 2008), the term ‘Massive’ being
used in the general computing sense where it immgidremely large numbers (i.e.
millions) of agents.

Resource limitations in agent-based simulation n@yencountered as the modeller
adds more agents to investigate whole system bainavas the modeller adds
complexity to each agent in the form of rules amgameters, or the modeller may
wish to examine the response of an agent in a mmeatistic and complex
environment. Haefner (1992 pp. 156-157) had thesight nearly 20 years ago to
identify aspects of ecological individual-based mlsdthat would benefit from
advanced computing: multi-species models; modelamge numbers of individuals
within a population; models with greater realisnthe behavioural and physiological
mechanisms of movement; and models of individuaith wadditional individual
states' (e.g. genetic variation). The introductaina spatial dimension also adds
complexity and puts demands on computing resousasmany agent models are
spatial; therefore, this chapter focuses on spatjaht-based models.

Review of large-scale modelling techniques

There have been a number of methodologies arisiitiy which to deal with the
problem of ‘large scale’ simulations in the ageaséd literature, in a number of
disciplines, ranging from molecular physics, soseience, telecommunications and
ecology, to military research. Some of these nuoighare given in Table 1. This
chapter focuses on the two most common types atisnlfound in the literature: (1)
Model software restructuring; (2) Computer hardwarel software programming
solutions, including the use of vector computersgpics Processing Units (GPUSs)
and parallel computing.

Solution

Pro

Con

Reduce the number of ager
or level of agent complexity,
in order for model to run on
existing hardware.

No reprogrammini
of model.

Assumes dynamics of a smaller or less com
system are identical to larger systems.

Revert to a population base(
modelling approach.

] Could potentially
handle any numbe
of individuals.

Lose insights from agent approach. Effects of

r diversity in agent population lost. Emergent
properties from simulation of non-linear
interactions at agent level difficult to capture.
Construction of entirely new model (not agent
based).

Invest in a larger or fast
serial machine.

No reprogramminy
of model.

High cost. CPU speeds limited to gains of on
few percent. Most gain likely for large memory
problems, but again maximum machine memg
is limited. Multi-threading or parallelism would
increase the utility of this approach.

ry

Run the model on a vector
computer.

Potentially more
efficient as more
calculations may
be performed in a
given time

High cost. Vector hardware not easy to obtain
(although GPU may compensate this somewh

at —

see below). This approach works more efficiently

with SIMD, possibly not so suitable for agent-
based models with heterogeneous model
processes.

Supe-individuals (model
software restructuring).

Relatively simple
solution, keeping
model formulation
similar.

Restructuring of model. Aggregation can cha

dynamics. Potentially inappropriate in a spatial

context (Parry and Evans 2008).

Invest in a large scale
computer network and
reprogram the model in
parallel.

Makes available
high levels of
memory and
processing power.

High cost (although lowering with advent of
multi-core and GPU computing). Advanced
computing skills required for reprogramming o

model software. Algorithms need to be modifi¢d

to cope with out-of-order execution on differery
cores. Communication efficiency between cor
becomes important. Solutions required are
problem dependent.

f

t
ES

Table 1: Potential solutions to implement when faakwith a *

Adapted from (Parry 2009)

Model software restructuring

. ‘super-individuals’

large scale’ agent-based model.

A relatively simple option is to implement an aggagon of the individual agents into
“super-agents', such as the “super-individual' cgmbr in ecological modelling
(Schefferet al., 1995). Other terms coined for this approach in ecology the

‘Lagrangian Ensemble’ method (Woods and Barkmarg841 Woods, 2005) and
‘generalised individuals’ (Metz and de Roos, 1994.similar approach has been
termed ‘agent compression’ in social science (Weade Dibble, 2007) which is

derived from an earlier ecological paper (Stagel., 1993).

In many ways these

approaches are analogous to the concept of ‘cohatigch has been used for a long
time in entomological modelling (e.g. Barlow andx@i, 1980; Ramachandramurthi

et al., 1997). There are a number of examples of tipersimdividual method in
relation to agent-based models in a wide rangédevhture, with examples in ecology
(Schuler 2005; Parry and Evans, 2008) and sociahse (epidemiology) (Dibblet
al., 2007, Raat al., 2009). The basic concept of this approachasvshin Figure 1.

Figure 1: ‘Super-agents’: grouping of individuals nto single objects that represent the collective
(from Parry and Evans 2008).

The challenge to using a super-individual approachelating super-individuals to
individuals in time and space (Parry and Evans820(Bome solutions to managing
super-individuals spatially have been proposed,te.gaintain a constant number of
super-individuals within a spatial unit, so thatliriduals migrate from one super-
individual in one cell to become part of a supeatiidual in another cell. However,
these solutions still affect model behaviour antbihes down to a ‘trade-off between
error and computing costs’ (Hellweger, 2008 pp 148his approach is still likely to
have some limitations when behaviour at low deesiis important and there is a
strong spatial effect on the individuals.

Recent work has proposed a dynamic approach teréeion of super-individuals
(Wendel and Dibble, 2007). Computing techniquésgisompression algorithms are
applied to homogenous super-individuals to seletticompress their attributes. The
algorithm can maintain the integrity of the oridirdata; however, it might be an
advantage for the algorithm to combine similar pgeof information, to produce a
more compact compression. The result is supewithaials that contain varying
numbers of similar or identical individuals, froms} a single individual to many,
depending on the uniqueness of the individuals.e @tiributes of the individuals
contained within the super-individual are monitomer time, so that if individuals
differentiate themselves from the group (e.g. tblegnge spatial location, perhaps to
another grid cell) they are extracted from the sipéividual and become
individuals. If the attributes of the uncontainegent now matches another super-
individual they may join that super-individual (e.they are added to a super-

individual at their new spatial location). Althduthere is some computing overhead
for this ‘dynamic agent compression’, it has bedwovs that it may give some
efficiency gain over an individual-based model whilpromising to preserve
heterogeneity as necessary (Wendel and Dibble,)20@7general, the fewer unique
agents in the simulation the more effective thigrapch will be.

Model software restructuring example: spatial super -individuals

This example uses a spatially-explicit individualsbd aphid model detailed in
(Parry, 2006; Parrgt al., 2006b); see also the section later in this draffExample

of the use of an Agent-parallel approach’. Turning individuals in this simulation
into ‘super-individuals’ involved only a small al&tion of the model’s structure (for
details see Parry and Evans, 20083).variable was added to record the number of
individuals all super-individuals actually represekquations that were dependent on
density (such as morphology determination) wereredt so that the density values
were related to the real number of individualshe simulation, not the number of
super-individuals.

Movement of super-individuals followed the sameesulas that of individuals;
however this produced spatial clustering of theytaiions. The model was tested by
Parry and Evans (2008), using varying populatidnsdividuals (100, 1,000, 10,000
and 100,000 and 500,000 individuals) representedsdyying numbers of super-
individuals. A brief summary of the findings irigtpaper follow.

The super-individual model runs on a cellular larage of 50x50 25m cells, with the
initial population of apterous adult aphids inigidtat the central cell.

Temporal Results

The temporal comparison of super-individuals (repnting 10,000 individuals) given
in Parry and Evans (2008) is shown in Figure 2.e Thsults for 1,000 super-
individuals (scale factor 10 individuals per supatividual) are the only results that
fall within the 95% confidence limits of the origihmodel for the duration of the
simulation period. This is due to excessive diszagon of mortality in the model for

the super-individuals. Therefore super-individusfidarge numbers of individuals as
shown here with low scale factors may be the ordgeptable way to use this
approach, in this case.

14000

12000 4%
;':il
g
b Ii
= 10000 H—ck
111 Lk
® il
& 8000 +—t —— 10000
s i3 A oo 10 super individuals
E 100 super individuals
3 6000 —— 1000 super individuals
8
5
o 4000
=
2000
. | | i j | | ‘
266 2586 06 326 348 366 386

Julian day

Figure 2: 10,000 individuals: comparison between glividual-based simulation, 1,000 super-
individual simulation (each represents 10 individués), 100 super-individual simulation (each
represents 100 individuals) and 10 super-individuasimulation (each represents 1,000
individuals), showing 95% confidence limits derivedrom the standard error.

Spatial Results

The spatial results given in Parry and Evans (208/8) summarised in Figure 3
Clustering is evident in the spatial distributiofhe super-individuals are contained
in fewer cells, closer to the origin, than the indial-based simulation for all
instances of super-individuals, even those wittow bcale factor. Thus, it is an
important consideration for spatially-explicit mégl¢o test super-individual scaling

approaches spatially as well as temporally, as ¢eatptesting will not show the
spatial errors that appear more sensitive.

(a) 10,000 individuals, density at 2 days: (I-r) ldividual-based simulation, super-individual
simulation scale factor 10, 100 and 1,000

L & A £

(b) 10,000 individuals, density at 20 days: (I-r)ddividual-based simulation, super-individual
simulation scale factor 10, 100 and 1,000

o] & e .

(c) 10,000 individuals, density at 40 days: (I-r)idividual-based simulation, super-individual
simulation scale factor 10, 100 and 1,000

2

Figure 3: Spatial density distributions for individual-based versus super-individual simulations
(10,000 aphids) at (a) 2 days (b) 20 days and () days. The distribution further from the
central cell is influenced by the constant westerlwind direction to result in a linear movement
pattern.

Computer hardware and software programming: paralle | computing

Multi-core architectures

‘Parallel computing’ encompasses a wide range ofpeder architectures, where the
common factor is that the system consists of a munad interconnected ‘cores’
(processing units), that may perform simultaneoakutations on different data
(Wilkinson and Allen, 2004). These calculationsynize the same or different,
depending whether a ‘Single Instruction Multiple t®a(SIMD) or ‘Multiple
Instruction Multiple data’ (MIMD) approach is impfented (see glossary).

We are not concerned here with issues of pararmsptere exploration or monte-carlo
simulations, in which many runs of a small seria.(single-CPU) code may be
required. In such cases efficient use of compdiigsters can be made by running
identical copies of the code on many separate awmieg solutions such as CONDOR
(http://www.cs.wisc.edu/condor). While these areaisense “large-scale” and make
good use of multi-core or distributed computer teses on heterogeneous hardware,

here we discuss the use of parallel computing tirem$ the issue of models that
require significant resources even for a single ehoah.

Reprogramming the model in parallel is challengirigespite this, over the last ten
years or so it has become a popular solution f@ntbased modellers in many
different fields of research.These range from ecology (Lorek and Sonnenschein,
1995; Abbottet al., 1997; Wanggt al., 2004; Immanuett al., 2005; Wanggt al.,
2005; Wanget al., 2006a; Wanget al., 2006b; Parryet al., 2006a) and biology
(Castiglione et al., 1997; Da-Junet al., 2004) to social and economic science
(Massaioliet al., 2005; Takeuchi, 2005) and computer science (Pepal., 2003),
including artificial intelligence and robotics (Boket al., 1994; Bouzidcet al., 2001).

In the early 1990s, work in the field of molecuthmamics (MD) simulations proved
parallel platforms to be highly successful in eimaplarge-scale MD simulation of up
to 131 million particles — equivalent to very simpagents’ (Lomdahét al., 1993).
Today the same code has been tested and useduiatgimp to 320 billion atoms on
the BlueGene/L architecture containing 131,072 IBMwerPC440 processors
(Kadauet al., 2006). Agent-based simulations in ecology and social saeend to
comprise more complex agents. Therefore, disetbueéxecution resources and
timelines must be managed, full encapsulation eihtgmust be enforced, and tight
control over message-based multi-agent interacteonecessary (Gassetral., 2005).
Agent models can vary in complexity, but most témdbe complex especially in the
key model elements of spatial structure and agetgrbgeneity.

Graphics Processing Units (GPUSs)

A recent advance in desktop computing through thteoduction of Graphics
Processing Units (GPU) has now made it even efwmienodellers to take advantage
of data-parallel computer architectures (Lysenkd BYSouza, 2008). The need for
high levels of inter-agent communication and agantement can make it difficult
for cluster-based parallel computing to be effitiem issue that may be addressed by
tighter communication within a GPU.

Essentially GPUs are similar to Vector computeese (glossary). The structure of
agent simulations (often with asynchronous updasind heterogeneous data types)
could mean that running a simulation on a vectonmater may make little difference
to the simulation performance. This is becauseagent model typically has few
elements that could take advantage of SIMD: ratfedysame value will be added (or
subtracted) to a large number of data points (Ng&ckbal., 2008). In particular,
vector processors are less successful when a prnogiges not have a regular
structure, and they don't scale to arbitrarily éagyoblems (the upper limit on the
speed of a vector program will be some multiplehaf speed of the CPU (Pacheco,
1997)). GPUs offer some advantage over vectorgasmrs — their operation is single
process multiple data (SPMD) rather than SIMD,had &ll processing units need not
be executing that same instruction as in a SIMDesys(Kirk and Hwu, 2010).
Although it is difficult to keep the advantages alfject-oriented code in a GPU
environment, there can be considerable benefierins of speed.

Lysenko and D'Souza (2008) manage to reformulatggant-based model to operate
on a GPU through stream processing (see glossanfhdé use of large, multi-

dimensional arrays to contain the complete statearofagent. Kernels are then
programmed to manage the computer’'s resources tfiee. GPUs) to run update

functions on the arrays. A different kernel isatesl for each update function, which
operate one at a time on the dataset. Problemalsweencountered when handling
mobile agents, but they can be overcome (see beloW)eir GPGPU (General
Purpose GPU) approach required explicit use ofjthghics card’s texture maps and
pixel colour values. Since that time, further depshents have made it more
straightforward to use GPUs for general computatidgth the advent of better
hardware and libraries designed for the purposeh sas NVIDIA's CUDA
(http://developer.nvidia.com/object/cuda.hfml These libraries relieve the
programmer of some of the previous awkwardnesshiedoin converting code for
use on GPU, although awareness of the hardwareti&ystill required in order to get
good performance. Other similar libraries suct\pple’s openCL (Khronos, 2010),
Intel Ct and Microsoft Direct Compute also exist ba of the time of writing seem to
be in a less advanced state of development. Theaser llibraries also seek to
incorporate some level of hardware independence ardtherefore likely to be
somewhat more involved to code with (Kirk and Hw2010). Object-oriented
Molecular Dynamics (MD) code already exists thah exploit the CUDA library
(Stoneet al., 2007), so that the prospect for making indivichesed or agent-based
code that exploits these libraries in the futurauldoseem to be good. Typically for
MD codes a 240 core GPU seems to be able to ddiwdfar performance to a 32
core CPU cluster (see for examplehttp://codeblue.umich.edu/hoomd-
blue/benchmarks.html

Challenges of parallel computing

Several key challenges arise when implementinggemtamodel in parallel, which

may affect the increase in performance achievedes@& include load balancing
between cores, synchronising events to ensure lggusaonitoring of the distributed

simulation state, managing communication betweedesoand dynamic resource
allocation (Timm and Pawlaszczyk, 2005). Good ldedancing and inter-node
communication with event synchronisation are céntmathe development of an
efficient parallel simulation, a full discussion which is in Parry (2009). Notable
examples of load balancing strategies can be fdonBacheco (1997), including
“block mapping' and “cyclic mapping' (see glossary)

A further major hurdle is that many (perhaps moagent-based models are
constructed with the aid of agent toolkits suchRapast or NetLogo. These toolkits
may not be able to handle this conversion to amoftregram representation
(particularly an issue for GPU). Recently Minsord arheodoropoulos (2008) have
used a High Level Architecture (HLA) to distributee RePast Toolkit for a small
number of highly computationally intensive agentgeroup to 32 cores with
significant improvements in performance. Ral. (2009) express reservations about
the general availability of such HLAs however. he texamples that follow we show
an instance of RePast parallelised using a libM{lJavd) that adds external
Message Passing Interface (MPBalls to java, but use of this library required
extensive restructuring of the original model caake it was designed for serial
execution.

3 Message Passing Interface for Java (MP1Jatta)//www.hpjava.org/mpiJava.htrig no longer
available for download online. It is super-cedgdPJ-Expres#ttp://mpj-express.org/
* See glossary for definition of MPI

10

The ‘Agent-parallel’ approach

This approach divides the agents between core® palallelisation focuses on the
agents and divides them between the cores whigh tkaek of the individual agents’
properties and spatial location. Thus, each carstikeep up-to-date information on
the complete environment and surrounding agentsmr@unication with other cores
is necessary to update on the actual agent denfitiea given location as a result of
movement, birth and death. This form of paral&len is similar to ‘functional
decomposition’ (Foster 1995), which divides variousdel processes or calculations,
though not necessarily agents, between cores.

Examples from ecology:

* Aphids and Hoverflies (Parry and Evans, 2008), ¢kample used in this
chapter.

* Schools of Fish (Lorek and Sonnenschein, 1995) cludes an extension
where fish are dynamically redistributed accordingheir neighbourhood to
improve efficiency.

» Trees (one processor per tree) (Hast., 2008)

» Landscape vegetation model (functional decompagiti@Cornwell et al.,
2001)

« Daphnia, distributing individuals between processas cohorts or ecotypes,
similar to super-individuals (Ramachandramusthal., 1997; Nicholset al.,
2008)

Examples from social science:
» Financial markets (Massaiai al., 2005)
» Crowd simulation (Lozanet al., 2007)

The ‘Environment-parallel’ approach

This approach divides the geographical space betweees. The parallelisation
focuses on a point in space (e.g. a grid cell)ctvig assigned to each core. The core
then keeps track of all agent activity within tismlace. This has also been termed
‘geometric’ or ‘domain’ decomposition (Foster, 1995

Examples from ecology:
» Parallel Individual-Based Modeling of Evergladeseb&cology (Abbottet
al., 1997)
+ Design and implementation of a Parallel Fish MddelSouth Florida (Wang
etal., 2004)
» Fire simulation (Wet al., 1996)
» Forest model (Chave,1999)
Examples from social science:
» Parallel implementation of the TRANSIMS micro-simtibn (Nagel and
Rickert, 2001)
» Abstract agent model ‘StupidModel’ (Lysenko and @iZa, 2008)
» Traffic simulation (Dupuis and Chopard, 2001)
» Disaster Mitigation (Takeuchi, 2005)

11

Parallel computing examples: ‘agent-parallel’ and * environment-parallel’
approaches

Example of the use of an Agent-parallel approach

This example uses a spatial predator-prey (howvaglyid) model to show how an
agent-parallel model can be established. Howetere were shortcomings of this
approach for this particular model due to agemraxtion, which is discussed.

The basic overall structure of the model systemingilar to the structure used by
Tenhumberg (2004) which refers to two interactinlg-smodels for syrphid larvae and
aphids. However, in the individual-based modelspreed here, the movement of
adult female syrphids across the landscape is aledelled. The model was
constructed with the Repast 2.0 agent-based saftdarelopment toolkit for Java.

This example uses the aphid model as used to rdligstthe concepts of super-
individuals earlier in the chapter. The model diéss the population lifecycle of an
aphid, Rhopalosiphum padi. This includes spatial as well as temporal pdmria
dynamics within a field. Full details of the aptsdb-model can be found elsewhere
(Parry, 2006; Parrgt al., 2006b), with a highly simplified model flow diggn shown

in Figure 4.

The basic rules followed in the syrphid model dvex in

Figure 4: Simplified flow chart for aphid model

Figure 5, with more detail on the rules used intibgerfly model given in appendix
1, as this sub-model is unpublished elsewhere. tWoe sub-models (aphids and
hoverflies) are connected to one another, by thesumption of aphids by hoverfly
larvae. The relationship between the two modetiniplified in Figure 6.

The hoverfly-aphid model is initiated with one aptes adult aphid per cell (13nin
the field cells only and one female adult hoveghyr cell in the field margin cells
only. The simple landscape is as shown later i; ¢hapter, two rectangular fields
split by a central margin (see Figure 11).

Pre-step
Post-step

st |
[e |
t

12

Are enough
aphids

Is hoverfly

adult? present?
- YES
N
¥
. Larvae Consurne
Is crop early in dies aphids
season?

YES

Does location
have aphids?

MO

hawe other
larvae?

MO
YES
! ¥
OvipF Mave away Mave away larger
short distance distance

Has larvae
consumed = 120
aphids?

YES

Larvae pupates
(becomes adult)

Figure 4: Simplified flow chart for aphid model
Figure 5: Flowchart of syrphid model.

Eggs laid according to crop
stage, presence of aphids
and presence of conspecific

Death due to lack larvae.

of aphids.

i Spatial individual-based
Pupation hoverfly population model
Larvae consume aphids, until

number consumed = pupation

threshold... then larvae become adult

hoverflies.

Spatial individual-based

Final Moult aphid population model

Alate movement,

Death due to
environmental factors or
hoverfly consumption.

Death due to
environmental factors or
hoverfly consumption. ¥

Figure 6: Hoverfly-aphid model, key processes

In order to parallelise the model to distribute #yents to different cores in a cluster,
a Message Passing Interface (see glossary) for Javas used
http://www.hpjava.org/mpiJava.htnfho longer available for download, see footnote
3), run on a Beowulf cluster (see glossary). Athetime step, agents are updated on
the worker cores (See Figure 7), as the contra ooaintains global insect density
and aphid consumption information and controlssiheulation flow.

'

Pre-step

Worker
nodes

Post-step

Pre-step

Post-step

Control
node

T

Figure 7: Parallel model flow chart, blue text indtates interaction between the two sub-models;
red arrows indicate interaction between the controtore and the worker cores

Testing just the aphid model, simple tests of thealel code versus the original
model (without hoverfly larvae) showed the parafi@del to replicate the original
model accurately.

However, when larvae were introduced to the matieke were two major problems
that meant the parallel implementation did not icgpé the original, non-parallel
model implementation. These arise from the addedptexity of the simulation.
The most complex element of the model to prograra the interaction between the
hoverflies and the aphids (i.e. aphid consumptioiis involved additional message
passing, as the hoverfly may consume aphids thsileeon another processor
(although in the same cell geographically). Thaemefconsumption for each cell had
to be totalled on the control core and then messpgssed to each core to instruct the
core to remove a given number of aphids in each d¢ébwever, as these messages
are only sent once per iteration, it was possibtenfore than one hoverfly larvae to
consume the same aphid (as the hoverfly larvaedvanly have information from the

14

previous model iteration on the total aphid deasitivithin the cell, and would be
unaware if an aphid had been consumed by anothverfholarvae on another core).

The result is that occasionally the total calcudatensumption of aphids per iteration
per cell is greater than the total density of aptpdr cell in that iteration. A simple

fix was added to recalculate the total consumptim,that when the total aphid

consumption is greater than the total aphid density consumption is reduced to the
total aphid density. However, the problem stithegns, and it explains lower aphid
populations in the parallel model than in the nanafiel model, as shown by Figure
8.

10000000

1000000 -

—— Mean Total Aphids: Non-parallel
——Mean Total Aphids: Parallel

Total Population

100000 -

10000 T T T T T ¥
0 20 40 60 80 100 120
Day

Figure 8: Comparison of the temporal dynamics of th total population of aphids between
parallel and non-parallel simulation implementatiors (error bars show standard error).

In addition, more hoverflies are born into a céln should be. During the same
iteration different female hoverflies on differeptocessors may perceive a cell to
have no larvae present, and then both lay in thiht ¢lowever, the model rules that
once larvae are present in a cell no more larvaeldhbe laid there. The result is
likely to be higher numbers of larvae throughowd #imulation, which is shown by
Figure 9. This also acts to reduce the aphid fadipn below that of the non-parallel
simulation.

15

10000

1000

100

1ty A

10

Total Population

I
| A

|

W ¥ N
[
|

A
Y

0.1

20 40 60 80
Day

—— Mean Hoverfly Larvae: Non-parallel
——Mean Howerfly Larvae: Parallel

Figure 9: Comparison of the temporal dynamics of th total population of hoverfly larvae
between parallel and non-parallel simulation implerentations

The knock-on effect is that although higher popatat of larvae are present in the
non-parallel model, due to the artificial reductiorthe aphid population and artificial
increase in the larvae population, these larvaelem® likely to reach adulthood as
there are not enough aphids to consume so that dWihegrgo the transition to
adulthood in the model before dying (a combinatbmigher competition due to the
higher larvae density and lower aphid populationg tb the higher consumption

rate),
10000
s EEEE
K ——Mean Adult Female Hoverfly: Non-
3 parallel
2 1000
a —— Mean Adult Female Hoverfly: Parallel
s
(o]
S
100 T T T T T T
0 20 40 60 80 100 120
Day
Figure1io.

16

10000

—— Mean Adult Female Hoverfly: Non-
parallel

1000
—— Mean Adult Female Hoverfly: Parallel

Total Population

100

0 20 40 60 80 100 120
Day

Figure 10: Comparison of the temporal dynamics oftie total population of adult female hoverfly
between parallel and non-parallel simulation implenentations (no mortality)

These problems are not experienced in the nonipbnabdel, as it is straightforward
to re-set the number of hoverfly larvae presenhiwiti cell during a time-step so that
further hoverfly larvae are not introduced mid-ton, and the consumption of
aphids does not conflict as information on the nenmdf aphids present can also be
updated easily mid-iteration.

Therefore, the observed differences in the hovgrfigulation dynamics between the
non-parallel and parallel simulation is attributatd these programming issues, which
must be resolved before the parallel model can bed ufurther in scenario
development. However, the comparisons provide matde insight into the
difficulties that may arise when simulating incrieaty complex agent-based models
in parallel. One possible solution may be the akéghost’ agents, as done by
Nicholset al. (2008), however until tested with this particutaodel it is uncertain if
this would fully resolve the issues. More gengrathis indicates that as the
complexity of an agent based model increases, jt beamore efficient to distribute
the model environment (as described in the nexiaseon an ‘Environment-parallel’
approach), rather than the agents, so that loeadtagnay interact directly and update
parameters within a single model iteration.

Example of the use of an Environment-parallel apprach

The environment-parallel approach is essentialigren of domain-decomposition in
which spatial units are passed out for processipgrémote cores, rather than
individual agents. Two challenges are: firstlygfticiently distribute the environment
across cores so as to keep the processor loacdasas\possible and secondly, how to
handle the interaction between, and movement efagents.

For the hoverfly-aphid model described here, hawgdinteractions is relatively simple
— the landscape (see Figure 11) is divided integalar cellular grid, which is used to
organise the search process by which hoverfliesodés their prey. Note that this
particle-in-cell approach need not constrain thtuacspatial locations of agents,
which may still take on values to a much higheelesf precision than cell locations

17

(c.f. Bithell and Macmillan (2007)) — the cells gy act as agent containers. Since
the hoverfly larvae are relatively immobile the@asch process is approximated as
involving only the cell that they currently occupgs opposed to having to search
nearby cells — this introduces further complicati@noted below). Cells can then be
handed off to remote cores, for processing of attgoof the model that do not involve
movement beyond cell boundaries (egg-laying by Hiowadults, predation by larvae,
progression of larvae to adult hoverfly, productafryoung by aphids, calculation of
movement by either type of insect) during the fpatt of the model timestep. Since
all cells are independent at this point, this rssinl a high degree of efficiency in the
use of the distributed cores (provided that thédistribution gives equal numbers of
insects per core) whilst also resolving the issaesing in the agent-parallel
methodology described above.

18

L eee—
0 50 100 150 200 B 0 1 2 3 a4
Aphids per pixel ac white Hoverflies per pixel

Figure 11: Snapshots of spatial distributions of apids, hoverfly larvae and hoverfly adults
showing spatial distribution over a 100m x 200m doain.

For the current simulation cells are 4 this means that typical movement per
timestep (one day) exceeds the cell size (see Ajipger insect movement may
therefore necessitate transfer of agents from theirent core to a remote core upon
which their new cell is located. At the end of #iwve predation timestep, therefore,
all the cells are synchronized across cores (tarerthat the same stage of calculation
has been reached) and then a communication spegfeamed to move agents to their
correct new locations (see Figure 12). As this comication step is relatively
expensive, it reduces the level of speedup achiewmewhat.

Pre-step Step Post-step
» output densities » | update agents: P! | create new nymphs: split between
. agents that move cells are split between those that occupy local cells
. those that move locally or those that emigrate to remote cores
Processes on each core : or those that emigrate to remote cores

update environment

A

update consumption

insert local movers or new nymphs
into their new cells

: Post-step
Cross-core comunication . [decompose
: model domain send emigrants to their
new cores and place into
remote cells

Figure 12: Schematic to show the sequencing of tlemvironment-parallel model. Note that here
there is no distinction between workers and controt all cores are treated equally and all run the
same set of processes.

In order to implement the above scheme the modeal mecast into C++, so that
advantage could be taken of an existing data-ghrédkmulation (the graphcode
library - Standish and Madina 2008), in which th&IMbarallel part of the code is
encapsulated in the formulation of the model gathng with a utility program
(named classdesc) that allows packing and unpacKirggbitrarily structured agents
for transfer between cores, making it possible ®&fingé the agent dynamics
independent of the details of the MPI libraries.

The model, when re-coded into C++, produces eisdlgnidentical results (barring

very small variations introduced by the use of mmdnumber generators) to the

original Java version. The parallel version of tmwele in this case shows negligible

differences from the serial version. The re-cgdif the model into C++ might be

expected to have efficiency gains before any palisédition of the model (as shown

for a similar individual-based model of a plant-mptlisease system by Barnes and

Hopkins 2003). However, at least for the curremplementation, using java openjdk | comment [pard4g 1]: When I ran
1.6.0 and gnu C++ 4.3.2, runtimes of the seriakioer of the code in the two <~ | these models| found the Java was much

A = , more efficient than the C++?! Java memary
languages proved to be comparable. The paralisiores of the two implementations | use = 13.5 MB and time = 98.1 sec, versus

i H R ; H C++ memory use = 233MB and time =
are not compared as the Java simulation had signifierrors introduced by the | /= ¥2rey = figures did you get Mike?

20

parallelisation, as discussed in the precedingsect An analysis of the speed-up of
the Java model, when simulating aphids only, i®igiin Parry and Evans (2008),
which also draws comparisons with the speed of $heer-individual model
implementation.

The environment-parallel example presented so & two simplifications that in
practice side-step two of the more awkward issinies heed to be addressed in
creating parallel agent code — namely a) domairomgosition is performed only
once at the start of the run, where in principlshibuld be a dynamic process that is
adaptive depending on agent density, in order suena balanced load and b) the
interaction between agents takes place only wighgingle cell, thereby limiting the
necessary processes to a single core. We discubs ofathese in the following
sections.

a) Balancing loads in the spatially decomposed case

When the density of agents does not vary signifigaacross the spatial domain (or
the density is uniform but the internal computatwithin each agent is not spatially
variable) then the decomposition of the domain lmamachieved at the start of the run
by allocating equal area blocks of cells to différprocessors (see e.g. Abbettal
1997). However, where there are mobile agents #wesity of occupation of the
domain need not be uniform either spatially or terafly. Figure 11 shows two
shapshots from the run of the aphid-hoverfly moedate at day 2 and the other after
45 days. Note that initially the aphids are conmgdletuniformly distributed, but
hoverflies and larvae are concentrated near thélmiof the domain. However, once
significant predation has taken place, aphids &r®st entirely excluded from the
domain centre, with a similar distribution to treeviae, whereas the hoverfly adults
are almost uniformly spread. Since the aphids dometthe bulk of the computational
load, a simple block decomposition of the domairthwtores being allocated
horizontal strips of cells across the domain frap to bottom would lead to cores
near the domain centre spending much of their tdieecompared to those nearer the
upper and lower boundaries.

Since the evolution of the density field is not essarily known from the start of the
run, a re-allocation of the cell-to-core mappingud be recomputed automatically as
the run proceeds. In practice this is not alwaysinaple thing to do efficiently.
Standish and Modina (2008) use the parallel gragftitioning library PARMETIS
(http://glaros/dtc/umn.edu/gkhome/metis/parmetisiaesy). Other methodologies
exist based on space filling curves, for examplg. (8pringel 2005) — see figure 13.
The latter has the advantage of being straightfmiwe code directly, but unlike
PARMETIS does not explicitly take into account coamitation overhead, and has
the added disadvantage of requiring a domain thatbe easily mapped by a self
similar structure (e.g. in the example shown thid gas to have a number of cells in
each dimension that is a power of 2), making irteguegions with complex
boundaries more difficult to handle.

21

* [2] 2
A P 2
® Decompose ®
= | - —
Core 1

Core 2
Figure 13: Spatial domain decomposition using a Pea-Hilbert space filling curve. A self-similar

path is drawn connecting all the cells in the gridThe path is then traversed (as shown by the

arrows), counting up the computational load, and tke grid is then segmented along sections of the
curve so that equal loads can be distributed to ehccore (here load is assumed proportional to

the number of agents, shown as red dots).

In addition, any domain re-partitioning implies a&verhead in re-building the
allocation of cells to processor cores. How ofteis heeds to be done and whether it
is worth the time is problem dependent. For exarthke C++ version of the example
code on a 200m x100m domain runs 124 days on 3 ¢orjust 11 seconds. A much
larger domain or a larger number of days would lyikee required before load-
balancing the code would provide a practical bénefi

b) Dealing with non-local agent interactions

As mentioned above, we can overcome the problepredators on different cores
accessing the same prey by using the environmeatlglaapproach when the

predators do not look beyond their own local célbwever, once a region of

interaction exists that extends across many dblésproblem of co-ordinating agent
actions on different cores re-surfaces. Indeedythieal particle-in-cell code uses at
least a four or eight cell interaction region abautentral cell (see e.g. Bithell and
Macmillan 2007). Once the spatial domain is sptitoss cores, such interaction
regions also get subdivided. Typically the firstderequired to deal with this problem
is to maintain a ‘halo’ or ‘ghost’ region on eadatre, in which copies of the boundary
cells that lie on a neighbouring core, togethehygiissive copies of their contained

agents, are kept on the local machine (figure 14).

22

Local I Halo
Cell Cell Core 2
]

® ®
)
® e o)
]
L)
>
Di
@ ool ecompose R
L)
)
O] @ ocal
S OO Agent
0 Passive
° Copy
Core 1

Figure 14: Domain decomposition where agents inteca with others outside their own local cell.
The circled agent interacts with those in its own @l, but also those in the eight-member
neighbourhood outline by the blue square. On decongsition, part of this neighbourhood lies on

a remote core. A halo region is therefore definedraund the boundary of each decomposed part
of the grid, into which passive copies of the apppiate remote cells can be placed. Locally active
agents can then examine these copies in order to keadecisions about interaction with the
remotely stored agents. In this cased the circledgant can see one active agent on its own core,
and 4 passive copies that are active on core 2. Ageopies in the halo cells are updated whenever
their corresponding active counterparts on a remote&ore are changed.

This allows any independently computable symmdtacani-directional interactions
to be accounted for immediately (examples wouldntm@ecular, smooth particle
hydrodynamic or discrete element models, where eforencountered between
interacting particles are equal and opposite, empassibly determined by an external
field, or disease models where contact with infeagileads to susceptibles acquiring
disease, but the nature of the interaction is ingetional, with no feedback to the
infecting agent). Update of the passive agent copan be performed at the end of
each timestep as required. However, for typicalaggcal or social simulations this is
unlikely to be sufficient. Figure 15 illustratestgpical case. Here agent A is a
predator that can see only the prey (P) on its cave. Agent B can see a prey on its
own core, but also the passive copy of the preypleigo agent A. Suppose both A
and B choose to attack prey P: since the passipg abfirst knows nothing of the
attack of agent A, potentially A and B could indegently attempt to consume the
whole of P, leading to over-counting of the avddaprey. Any solution of this
problem must additionally take account of the ftit the order of execution on
different cores cannot be guaranteed.

23

* Predator ﬁ Predator (passive copy)

@® Prey O Prey (passive copy)

Core 2

*

" d

x

Core 1

Figure 15: Predator-prey interaction taking place &ross cores. Prey P can see both predator A
and the passive copy B'. Predator A, however, onlknows about P, and not about B'. Active
predator B on core 2 can see two prey, one of whigk the passive copy of P. Predators and prey
need to set and communicate flags to ensure consisty of action (see text). Once flags are
consistent (flag on P labels it with A, flag on Adbels it with P) then prey can be consumed as
arrowed.

Lysenko and D’Souza (2008) encountered a similablpm in the allocation of
single-occupancy spatial cells in their implemdontabf Stupid Model (Railsbacét

al 2005) — they overcame this using a two-pass meimachich the agents initially
attempted to place a flag in the cell they wishotgupy — a pre-allocated priority
allowed agents to compute independently which waulcteed, and on a second pass
those agents with highest priority got to occupy tklls of their choice. However, in
general it will not be known a priori which agefitosild have priority over others,
requiring some form of conflict resolution to beafoemed: in the predator-prey case a
competition between predators needs to ensue,rendutcome of this may not be
known ahead of time. Mello#t al. (1999) discuss such a case in their implementation
of deer predation by panthers (an extension ofehedier work by Abbottet al.
(1997)). In essence a further layer of communicat® needed in order to ensure

24

consistency between the cores. Looking back atdidb, we can envisage a three-
pass algorithm in which the initial exchange is dach predator to mark itself with a
flag indicating their interest in prey P. This flagthen copied across to the passive
copy of the predator (in this case B’) on the nbalring core. Prey P then examines
predators that are within range and runs a confeblution process (which may
involve a more or less elaborate chase sequenatving A and B’) to resolve the
winner of A and B’, setting a flag on itself withe identity of the winner. This flag
can then also be copied across cores, and thetpred¢an compare the flag on P with
their own identity in order to find the outcome e@ily this kind of algorithm may
need to be extended in the case of more compledafe strategies (hunting as
groups, for example) or more complex cognitive ageaible to take account of a more
extensive view of their surroundings and the awéélaoptions for attack or escape.
Again the result would seem to be that a genegardhm for dealing with this kind
of parallel consistency issue is unlikely to be gole — the necessary solution is
dictated by the problem at hand.

Potential efficiency gains

This section firstly compares the super-individuaiodel with a parallel
implementation of the aphid model only (describedParry and Evans, 20Q8yhich
was parallelised using the agent-parallel appradescribed in this chapter. The
aphid model parallelised well as agent-parallelaoge there was not the complexity
of the hoverfly interactions. This shows how pletedation and super-individuals can
both help deal with increasing numbers of agents.

The second part of the section presents the gffigigains in terms of memory and
speed with increasing numbers of processors foethironment-parallel version of
the aphid-hoverfly model, to illustrate how effistethis method has been in
parallelising this more complex model.

Model speed and increasing numbers of agents

Super-individuals always improve the model spe@t increasing numbers of agents
(Figure 13). This improvement is linear (shown here on a logdogle). The speed
improvement is enormous for the largest simulatiomkere 500,000 individuals
simulated with super-individuals using a scaledacitf 100,000 increases the model
speed by over 500 times the original speed. Howeétwvaas shown above that only
large simulations with a low scale factor (10-100Gay benefit from the super-
individual approach, thus for these scale factorsngprovement in model speed of
approximately 10,000-30,000% (100-300 times) thgimal speed would result for
simulations of 100,000 to 500,000 individuals.

Adding more processors does not necessarily inertaes model speed. Figure 13
shows that for simulations run on two cores (onetrod core, one worker core) the
simulation takes longer to run in parallel compatedthe non-parallel model.
Message passing time delay and the modified streiaifithe code are responsible.
As the number of cores used increases, the speptbvement depends on the
number of agents simulated. The largest improvénrerromparison to the non-
parallel model is when more than 500,000 agentsrareacross twenty-five cores,
where model speed does scale linearly as the numbeéndividuals increases.
Howeverlthoeugh the parallel model is slower by comparison for éovmumbers of

25

| individuals. Hewever—W\Vhen only five cores are used the relationship igemo
complex: for 100,000 agents five cores are fasign the non-parallel model, but for
500,000 the non-parallel model is faster. Thipashaps due to the balance between
communication time increasing as the number of carereases versus the decrease
in time expected by increasing the number of cor@serall, these results seem to
suggest that when memory is sufficient on a sipgteessor, it is unlikely to ever be
efficient to parallelise the code.

100000

10000

1000 /

—
[
[
3
4

!_——:_/\.

—
fan)

Speed up (% of Individual-based model speed)

1 10 100 1000 10000 100000 1000000

Number of agents
- =+ - Individual-based model —s— 2 processors —— 5 processors
—— 25 processors scale factor 10 scale factor 100
scale factor 1,000 scale factor 10,000 scale factor 100,000

Figure 13: Plot of the percentage speed up from thadividual-based (non-parallel) model
against number of agents modelled: comparison betwe super-individuals of scale factor 10,
100, 1,000, 10,000, 100,000 and 500,000

Model memory use and increasing numbers of agents

The individual-based model has a linear increasghan memory used as agent
numbers increase (shown here on a log-log sEaere 14.

Super-individuals always reduce the memory requéres) of the simulation (Figure
14). The relationship between the number of (real) iitigls in the simulation and
the memory used is linear, for each scale factomfrer of individuals represented by
each super-individuals). The memory requirement for a simulation of super-
individuals has a similar memory requirement tottld an individual-based

| simulation with the same number of ageatssuper-individuals For simulations of
100,000 agents this can reduce the memory requietoeless than 10% of the
memory required for the individual-based simulatigith a scale factor of 10,000,
and for simulations of 500,000 agents this may dmuced to around 1% with the
same scale factpso, when large scale factors are used, as agenibars increase
there is very little extra demand on memory

26

The mean maximum memory usage by each worker ndteeiparallel simulations is
significantly lower than the non-parallel modely Bimulations using more than two
cores (Figure 14).The relationship between the number of agentseénstimulation
and the memory used is linear for each number otqmsors. The two core
simulation used more memory on the worker core thannon-parallel model when
the simulation had 100,000 agents or above. Thigrobably due to the memory
saved due to the separation of the GUI onto thérabocore being over-ridden by the
slight additional memory requirements introduced thne density calculations.
However, when 5 and 25 cores are used, the memgnirements on each core are
very much reduced, below that of the super-indialcapproach in some cases. The
super-individual approach uses the least memorp®000 individuals, apart from
when only a scale factor of 10 is used (then the@® parallel simulation is more
memory efficient).

1000

100 -

Maximum memory used (MB)
=}

. et - = //
1 A'Z/_/.//‘//
0.1 T T T T T
1 10 100 1000 10000 100000 1000000
Number of agents

- =+ - Individual-based modsl —s— 2 processors —&— 5 Processors

—e— 25 processors scale factor 10 scale factor 100

scale factor 1,000 scale factor 10,000 scale factor 100,000

Figure 14: Plot of the mean maximum memory used ia simulation run against number of
agents for the model, for different scale factorsdr super-individuals

Hoverfly-aphid model environment-parallel programming efficiency

The C++ programmed environment-parallel versiothef hoverfly-aphid model was
run on a dedicated cluster at CSIRO Black Mount@ianberra. Each node in this
network has 28x dual 3.2 GHz Xeon, with 2 or 4 @byer node.

The speed-up of the model is linear in comparisoithe non-parallel serial model
code run on a single processor (Figtt. In terms of memory, the model uses a
little _more _memory per processor than the seriadehovhen run on just two

27

processors, however when run on _more there is exp@h improvement in the
memory use efficency of the model (Figl®.

7000

6000 -

5000 -

4000 -

3000 -

2000 -

Speed-up (% of serial C++ model speed)

1000 4

0 T T T T T T
0 5 10 15 20 25 30 35

Number of processors

Figure 15: Environment-parallel hoverfly-aphid model: percentage speed up from the individual¢ - - - | Formatted: Caption, Left, Space
based (non-parallel) model against number of procesrs Before: 0 pt, After: 0 pt

400

350 \

300 \
250 \

200

150

. \
100
L}
L]
50

0 T T T T : T
0 5 10 15 20 25 30 35
Number of Processors

Memory used per node (MB)

= Maximum memory used (MB) ------- serial code Expon. (Maximum memory used (MB)) ‘

28

Figure 16: Environment-parallel hoverfly-aphid model: Plot of the mean maximum memory usedl- - - { Formatted: Caption

per node (processor) in a simulation run against nmber of processors

Guidelines for agent-based model scaling

There is no standard method for the developmeageht-based modelling, although
there are a number of agent modelling toolkits eswkntly some design protocols
have arisen e.g. Gilbert (2007) and Griratnal. (2006). Therefore, as stated in Parry
(2009), there is no standard method with whichrgdacale agent-based model can
be best developed. Instead, Parry (2009) putsaimhsome key questions to consider
at this stage of model developméinom Parry 2009 pp 152):

1. What program design do you already have and whtteidimitation of this
design?
a. Whatis it the memory footprint for any existingptamentation?
b. What are your current run times?
2. What are your scaling requirements?
a. How much do you need to scale now?
b. How far do you need to scale eventually?
¢. How soon do you need to do it?
3. How simple is your model and how is it structured?
4. What are your agent complexities?
5. What are your output requirements?

The answers to these questions will help to detesrthie kind of solution you might
seek to the problems of scale. By initially inwgsting the ‘bottlenecks’ in your
model, you will be able to understand whether insmory availability or processor
speed that is limiting your model. If simple adioents to your model code are
insufficient to solve this, other solutions willeth need to be sought. Perhaps a
hardware upgrade may be sufficient, but if anythitiger than moderate scaling is
required a more drastic but longer term solutioghhbe necessary.

Question 3 is important to help decide which methw be optimal to scale up the
model. Model complexity, agent interaction andtisppanodel environments will all
pose challenges to the use of any method presheted Some suggestions are made
in this chapter as to how best to use some popgolations when scaling a complex
model, however this cannot be exhaustive and a afeakperimentation, creativity
and development of solutions appropriate to thaviddal model is likely to be
necessary.

Model outputs may also pose limits on the modeteims of memory for data storage
or the way that the output is handled (which magobee critical as the model is
scaled up). This should be considered when scalingn agent model and altering
the model structure.

A protocol

In relation to the key considerations highlightebdoee, a simple protocol for
developing a large scale agent-based simulatiordefised by Parry (2009 pp 153):

29

Optimise existing code.

Clearly identify scaling requirements (both for nand in the future).
Consider simple solutions first (e.g. a hardwargrage).

Consider more challenging solutions.

Evaluate the suitability of the chosen scaling sofuon a simplified version
of the model before implementing on the full model.

ogRrwbPE

The main scaling solution to implement (e.g. frorable 1) is defined by the
requirements of the modelmplementation of more challenging solutions shdudd
done in stages, where perhaps a simplified versidhe model is implemented on a
larger scale using some of the techniques deschibeal Also, as demonstrated here,
it is best to initially test the model with numbdower than perhaps required for
realism, to allow for faster run times when testargl experimenting with different
approaches. Agent simulation development shouilginate with a local, flexible
“prototype’ and then as the model development pesgs and stabilises larger scale
implementations can be experimented with (Gasteal. 2005). For complex
solutions, such as parallel computing, a simplifieddel is often necessary to
experiment with large numbers. Improvements to ehodfficiency are not
necessarily linear and optimal solutions tend tonfedel specific, thus solutions
demonstrated here will work for some agent-models ferhaps not so well for
others. A key point, however is to devise a setest cases against which the code
modifications can be validated at every stage:oalgh this should be a standard part
of any software development programme, it beconves enore vital in developing
parallel solutions, where subtle issues to do tiitting of agent updates and access to
data across cores can lead to difficult debuggiodlpms.

Acknowledgements

Much of this work was undertaken whilst the leadhau was at the Food and
Environment Research Agency, UK, funded by Defviany thanks to the Advanced
Scientific Computing team at CSIRO for their assise in running the models on the
cluster, particularly Aaron McDonagh and Tim Hos@alo Dr Andrew Evans at the
University of Leeds for assistance in the earlgssof this work.

Glossary
Please note this glossary is largely taken fronnyR@009)
Beowulf cluster A scalable performance computer cluster (distrithggstem) based

on commodity hardware, on a private system netwaitk) open source software
(Linux) infrastructure (see http://www.beowulf.org/

Block Mapping A method of partitioning an array of elements betweores of a
distributed system, where the array elements atdipaed as evenly as possible into
blocks of consecutive elements and assigned toepsocs. The size of the blocks
approximates to the number of array elements divimlethe number of processors.

Central Processing Unit (CPU)May be referred to as a ‘core’ or ‘node’ in paralle

computing: computer hardware that executes (presgsa sequence of stored
instructions (a program).

30

Cyclic Mapping A method of partitioning an array of elements betweores of a
distributed system, where the array elements ant#tipaed by cycling through each
core and assigning individual elements of the alwagach core in turn.

Grid Computer "Grids' are comprised of a large numbelisgarate computers (often
desktop PCs) that are treated as a virtual clugbemn linked to one another via a
distributed communication infrastructure (such lzes internet or an intranet). Grids
facilitate sharing of computing, application, datad storage resources. Grid
computing crosses geographic and institutional daties, lacks central control, and
is dynamic as cores are added or removed in anoutio@ted manner. BOINC

computing is a form of distributed computing is wédle time on CPUs may be
used to process information (http://boinc.berkeldy/)

Graphics Processing Unit (GPU) Computer hardware designed to efficiently
perform computer graphics calculations, particylddr 3-dimensional objects. It

operates in a similar manner to a vector compbigrjs now widely available as an
alternative to the standard CPU found in desktopmders.

Message passing (MPMessage passing (MP) is the principle way by wipiahallel
clusters of machines are programmed. It is a widekd, powerful and general
method of enabling distribution and creating eéfiti programs (Pacheco 1997). Key
advantages of using MP architectures are an aliitgcale to many processors,
flexibility, “future-proofing’ of programs and patiility (Openshaw and Turton
2000).

Message passing interface (MPI)A computing standard that is used for
programming parallel systems. It is implementedadibrary of code that may be
used to enable message passing in a parallel corgmtstem. Such libraries have
largely been developed in C and FORTRAN, but ase aked with other languages
such as Java (MPJ-Exprds$p://mpj-express.oryy/ It enables developers of parallel
software to write parallel programs that are baittgble and efficient.

Multiple Instruction Multiple Data (MIMD) Parallelisation where different
algorithms are applied to different data items tfecknt processors.

Parallel computer architecture A parallel computer architecture consists of a
number of identical units that contain CPUs (CdnfPaocessing Units) which
function as ordinary serial computers. These uné#ied cores, are connected to one
another. They may transfer information and dataéen one another (e.g. via MPI)
and simultaneously perform calculations on diff¢data.

Single Instruction Multiple Data (SIMD) SIMD techniques exploit data level
parallelism: when a large mass of data of a uniftype needs the same instruction
performed on it. An example is a vector or arragcpssor and also a GPU. An
application that may take advantage of SIMD is wiere the same value is being
added (or subtracted) to a large number of datatgoi

Stream Processings similar to aSIMD approach, where a mathematical operation is
instructed to run on multiple data elements sinmdtasly.

31

Vector Computer/Vector ProcessorVector computers contain a CPU designed to
run mathematical operations on multiple data eldmeimultaneously (rather than
sequentially). This form of processing is essélgte SIMD approach. The Cray Y-
MP and the Convex C3880 are two examples of veptmcessors used for
supercomputing in the 1980s and 1990s. Today, mosht commodity CPU designs
include some vector processing instructions.

32

References

Abbott, C. A., M. W. Berry, E. J. Comiskey, L. Jrdss, and H.-K. Luh. 1997.
Parallel Individual-Based Modeling of Everglades ebeEcology. IEEE
Computational Science and Engineerding0-78.

Ankersmit, G. W., H. Dijkman, N. J. Keuning, H. Mens, A. Sins, and H. M.
Tacoma. 1986 Episyrphus balteatus as a predator of the aphif@itobion
avenae on winter wheat. Entomologia Experimentalis etpligata 42:271-
277.

Barlow, N. D., and A. F. G. Dixon. 1980. Simulatiaf lime aphid population
dynamics. Centre for Agricultural Publishing and cddmentation,
Wageningen, the Netherlands.

Barnes, D. J., and T. R. Hopkins. 2003. The impagrrogramming paradigms on the
efficiency of an individual-based simulation mod&imulation Modelling
Practice and Theory/1:557-569.

Bithell, M. and Macmillan, W. 2007. Escape from thedl: spatial modelling with and
without grids. Ecological Modelling,00,59-78.

Bokma, A., A. Slade, S. Kerridge, and K. Johnsd®94l Engineering large-scale
agent- based systems with consensus. Robotics antputer-integrated
manufacturingl1:81-91.

Bouzid, M., V. Chevrier, S. Vialle, and F. Chareill 2001. Parallel simulation of a
stochastic agent/environment interaction modelegrated Computer-aided
Engineering3:189-203.

Castiglione, F., M. Bernaschi, and S. Succi. 18ifulating the immune response on
a distributed parallel computer. International d@alrof Modern Physics C
8:527-545.

Chave, J. 1999. Study of structural, successiomadlspatial patterns in tropical rain
forests using TROLL, a spatially explicit forest ded. Ecological Modelling
124233-254.

Cornwell, C. F., L. T. Wille, Y. G. Wu, and F. Hkl&r. 2001. Parallelization of an
ecological landscape model by functional decomjmrsit Ecological
Modelling 144:13-20.

Da-Jun, T., F. Tang, T. A. Lee, D. Sarda, A. Krshnand A. Goryachev. 2004.
Parallel computing platform for the agent-based aliad of multicellular
biological systems. Parallel and Distributed Cornmmut Applications and
Technologies, Lecture Notes in Computer Scie38205-8.

Dibble, C., S. Wendel, and K. Carle. 2007. Simuagztpandemic influenza risks of
US cities. Proceedings of the 2007 Winter Simukati@onference, Vold-
5:1527-1529.

Dupuis, A., and B. Chopard. 2001. Parallel simaolatof traffic in Geneva using
cellular automatain E. Kiihn, editor. Virtual Shared Memory for Distriied
Architecture. Nova Science Publishers, Inc., Conknbiy, USA.

Foster, I. 1995. Designing and Building Paralled@@ams. Addison-Wesley, Reading,
MA.

Gasser, L., K. Kakugawa, B. Chee, and M. Estev@52@mooth scaling ahead:
progressive MAS simulation from single PCs to Gridsilti-agent and multi-
agent-based simulation. Joint Workshop MABS 2004vNerk, NY, USA,
July 19, 2004.

Gilbert, N. 2007. Agent-based Models. SAGE, London.

33

Grimm, V., U. Berger, F. Bastiansen, S. EliassenGWwot, J. Giske, J. Goss-Custard,
T. Grand, S. Heinz, G. Huse, A. Huth, J. U. Jepg&nJorgensen, W. M.
Mooij, B. Muller, G. Pe'er, C. Piou, S. F. Railskaé. M. Robbins, M. M.
Robbins, E. Rossmanith, N. Ruger, E. Strand, SisSpWR. A. Stillman, R.
Vabo, U. Visser, and D. L. DeAngelis. 2006. A start protocol for
describing individual-based and agent-based mod&dslogical Modelling
198115-126.

Haefner, J. W. 1992. Parallel computers and indi@zichased models: An overview.
Pages 126-16/n D. L. DeAngelis and L. J. Gross, editors. Indiattbased
models and approaches in ecology: populations, aamitias and ecosystems.
Routledge, Chapman and Hall, New York.

Harmel, N., R. Almohamad, M.-L. Fauconnier, P. @rdin, F. Verheggen, M.
Marlier, E. Haubruge, and F. Francis. 2007. Roletespenes from aphid-
infested potato on searching and oviposition behaviof Episyrphus
balteatus. Insect Scienc&4:57-63.

Hellweger, F. L. 2008. Spatially explicit individdaased modeling using a fixed
super-individual density. Computers and Geosciefdds14-152.

Hemptinne, J.-L., A. F. G. Dixon, J.-L. Doucet, ahdE. Petersen. 1993. Optimal
foraging by hoverflies (Diptera, Syrphidae) and ylasidds (Coleoptera:
Coccinellidae): Mechanisms. European Journal obEntogy90:451-455.

Holloway, G. J., and A. R. McCaffery. 1990. Habitatlisation and dispersion in
Eristalis pertinax (Diptera: Syrphidae). Entomologit09116-124.

Host, G. E., H. W. Stech, K. E. Lenz, K. Roskoskigd R. Mather. 2008. Forest patch
modeling: using high performance computing to satell aboveground
interactions among individual trees. FunctionahPBiology 35:976-987.

Immanuel, A., M. W. Berry, L. J. Gross, M. Palmand D. Wang. 2005. A parallel
implementation of ALFISH: simulating hydrologicabmpartmentalization
effects on fish dynamics in the Florida Everglad8snulation Modelling
Practice and Theory3:55-76.

Ishida, T., L. Gasser, and H. Nakashima. 2005. MalysMulti-Agent Systems |.
First International Workshopin MMAS 2004. Springer-Verlag Berlin
Heidelberg, Kyoto, Japan.

Jamali, N., P. Scerri and T. Suguwara. (eds) 200&ssively Multi-Agent
Technology: AAMAS Workshops, MMAS 2006, LSMAS 20G61d CCMMS
2007 Hakodate, Japan, May 9, 2006 Honolulu, HI, U8y 15, 2007,
Selected and Revised Papers, LNAI 5043, Springelay@erlin Heidelberg.

Kadau, K., T. C. Germann, and P. S. Lomdahl. 200@ecular dynamics comes of
age: 320 billion atom simulation on BlueGene/L.emational Journal of
Modern Physics @7:1755.

Kareiva, P., and G. Odell. 1987. Swarms of predagahibit ~"preytaxis" if individual
predators use area-restricted search. The AmeNaaumralist130:233-270.

Khronos 2010. OpenCL implementations, tutorials aaanple code. Beaverton.
http://www.khronos.org/developers/resources/opencl.

Kindlmann, P., and A. F. G. Dixon. 1993. Optimaldging in ladybird beetles
(Coleoptera: Coccinellidae) and its consequenceghieir use in biological
control. European Journal of Entomold@443-450.

Kirk, D.B. and Hwu, W.W., 2010. Programming Mas$wearallel Processors: a
hands-on approach. Morgan-Kaufmann.

34

Lomdahl, P. S., D. M. Beazley, P. Tamayo, and NonBechjensen. 1993.
Multimillion particle molecular-dynamics on the CMinternational Journal
of Modern Physics C: Physics and Computet75-1084.

Lorek, H., and M. Sonnenschein. 1995. Using pdratlemputers to simulate
individual-oriented models in ecology: a case studsoceedings: ESM '95
European Simulation Multiconference, Prague, J@851

Lozano, M., P. Morillo, D. Lewis, D. Reiners and ©@uz-Neira. 2007. A distributed
framework for scalable large-scale crowd simulationR. Shumaker (Ed.):
Virtual Reality, HCIl 2007, Lecture Notes in ComputScience 4563, pp.
111-121.

Lysenko, M., and R. M. D'Souza. 2008. A Framewark Megascale Agent Based
Model Simulations on Graphics Processing Units. ridalu of Atrtificial
Societies and Social Simulatidi:10.

Massaioli, F., F. Castiglione, and M. Bernaschi0200penMP Parallelization of
Agent-Based Models. Parallel Computiy1066-1081.

Mellott, L.E., Berry, M.W., Comiskey, E.J. and Gsp4..J., 1999. The design and
implementation of an individual-based predator-pmegdel for a distributed
computing environment. Simulation Practice and Theg 47-70.

Metz, J. A. J., and A. M. de Roos. 1992. The rdiepbysiologically structured
population models within a general individual bassatiel perspective. Pages
88-111in D. L. DeAngelis and L. J. Gross, editors. IndiatlBBased Models
and Approaches in Ecology: Concepts and Modelsti&dge, Chapman and
Hall, New York.

Minson, R. and Theodoropoulos, G.K., 2008. Distiity RePast agent-based
simulations with HLA. Concurrency Computat.: Pregper.20, 1225-1256

Nagel, K., and M. Rickert. 2001. Parallel implenaiun of the TRANSIMS micro-
simulation. Parallel Computingj7:1611-1639.

Nichols, J. A., T. G. Hallam, and D. T. DimitrovO@3. Parallel simulation of
ecological structured communities: Computational edse hardware
capabilities, and nonlinear applications. Nonlindamlysis-Theory Methods
& Applications69:832-842.

Openshaw, S., and |. Turton. 2000. High performacomputing and the art of
parallel programming : an introduction for geograys social scientists, and
engineers. Routledge, London.

Pacheco, P. S. 1997. Parallel Programming with Nidirgan Kauffman Publishers,
San Francisco, CA.

Parry, H. R. 2006. Effects of Land Management upecies Population Dynamics:
A Spatially Explicit, Individual-based Model. PhDh@sis. University of
Leeds, UK.

Parry, H. R. 2009. Agent Based Modeling, Large &&iinulations. Pages 148-160
R. A. Meyers, editor. Encyclopedia of ComplexitydaSystems Science.
Springer, New York.

Parry, H. R., and A. J. Evans. 2008. A comparadivalysis of parallel processing and
super-individual methods for improving the compiataél performance of a
large individual-based model. Ecological ModellRit141-152.

Parry, H. R., A. J. Evans, and A. J. Heppenst@ll6a. Millions of Agents: Parallel
Simulations with the Repast Agent-Based Toolkitb@yetics and Systems

2006, Proceedings of the 18th European Meetingyefetics and Systems
Research.

35

Parry, H. R., A. J. Evans, and D. Morgan. 2006bhidppopulation response to
agricultural landscape change: a spatially expligitividual-based model.
Ecological Modellingl99451-463.

Popov, K., V. Vlassov, M. Rafea, F. Holmgren, Pamt, and S. Haridi. 2003.
Parallel agent-based simulation on a cluster okatations. EURO-PAR 2003
Parallel Processing790470-480.

Powell, W., S. A'Hara , R. Harling, J. M. Hollar®, Northing, C. F. G. Thomas, and
K. F. A. Walters. 2004. 3D Farming: Making biodisity work for the farmer,
Report to Defra LK0915.

Rao, D.M., Chernyakhovsky, A. and Rao, V., 2009dglling and analysis of global
epidemiology of avian influenza. Environmental Mblitig and Software24,
124-134.

Railsback S F, Lytinen S L and Grimm V (2005). @todel and Extensions: A
Template and Teaching Tool for Agent-based Modehhatforms. Webpage
athttp://condor.depaul.edu/~slytinen/abm/StupidModetikulation.pdf

Ramachandramurthi, S., T. G. Hallam, and J. A. dleh1997. Parallel simulation of
individual-based, physiologically structured popida models. Mathematical
and Computer Modelling5:55-70.

Scheffer, M., J. M. Baveco, D. L. DeAngelis, K. Rose, and E. H. van Nes. 1995.
Super-Individuals: a simple solution for modellitgyge populations on an
individual basis. Ecological Modelling0:161-170.

Schuler, A. J. 2005. Diversity matters: dynamic dation of distributed bacterial
states in suspended growth biological wastewateatrirent systems.
Biotechnology and Engineerirg.62-74.

Springel, V. 2005. The cosmological simulation c@geadget-2, Mon. Not. R. Ast. - { Comment [pard4g 2]: Check this

)

SO¢ 364, 1105-134 [Comment [pard4g 3]: full

)

Stage, A. R., N. L. Crookston, and R. A. Monserl@P3. An aggregation algorlthm
for increasing the efficiency of population modeEcological Modelling
68:257-271.

Stone, J.E., Phillips, J.C., Freddolino, P.L., iafd.J., Trabuco, L.G., and Schulten,
K., 2007. Accelerating Molecular Modelling Applic@ds with Graphics

Processors. J. Comput. Che@8, 2618-2640. ~ { comment [par44g 4]: Ful

Takeuchi, 1. 2005. A massively multi-agent simwatsystem for disaster mltlgatlon
in Massively Multi-Agent Systems I: First Internat@nwWorkshop MMAS
2004, Kyoto, Japan, December 2004. Springer-VeBagjn Heidelberg.

Tenhumberg, B. 1995. Estimating predatory efficieraf Episyrphus balteatus
(Diptera: Syrphidae) in cereal fields. Environméiiatomology24:687-691.

Tenhumberg, B. 2004. Predicting predation efficien€ biocontrol agents: linking
behavior of individuals and population dynamitC. Pahl-Wostl, S. Schmidt,
and T. Jakeman, editors. iIEMSs 2004 Internatiorahg@ess: “Complexity
and Integrated Resources Management”. Interndtidiravironmental
Modelling and Software Society, Osnabrueck, Germany

Timm, I. J., and D. Pawlaszczyk. 2005. Large Sdaidtiagent Simulation on the
Grid. Proceedings of the Workshop on Agent-based Economics (AGE
2005) at the IEEE International Symposium on Clug§temputing and the
Grid (CCGRID). Cardiff University, Cardiff, UK.

Wang, D., M. W. Berry, E. A. Carr, and L. J. Gro2806a. A parallel fish landscape
model for ecosystem modeling Simulat®?451-465

Wang, D., M. W. Berry, and L. J. Gross. 2006b. Gmapelization of a spatially-
explicit structured ecological model for integratedosystem simulation.

36

International Journal of High Performance Computikgplications20:571-
581.

Wang, D., E. Carr, L. J. Gross, and M. W. Berry020Toward ecosystem modeling
on computing grids. Computing in Science and Engjiimg 7:44-52.

Wang, D., L. Gross, E. Carr, and M. Berry. 2004siDe and implementation of a
Parallel Fish Model for South Florida. Proceedinfithe 37th Annual Hawaii
International Conference on System Sciences (H@S3S'

Wendel, S., and C. Dibble. 2007. Dynamic Agent Cragagion. Journal of Artificial
Societies and Social Simulatid®:9.

Wilkinson, B., and M. Allen. 2004. Parallel Progmamg: Techniques and
Applications Using Networked Workstations and HataComputers (second
edition). Pearson Prentice Hall, New Jersey, USA.

Woods, J., and W. Barkmann. 1994. Simulating PlamkEcosystems by the
Lagrangian Ensemble Method. Philosophical Transastiof the Royal
Society of London Series B-Biological Scien8d$:27-31.

Woods, J. D. 2005. The Lagrangian Ensemble metahfodesimulating plankton
ecosystems. Progress In Oceanograph§4-159.

Wu, Y. G., F. H. Sklar, K. Gopu, and K. Rutchey.9&9 Fire simulations in the
Everglades Landscape using parallel programminglagecal Modelling
93:113-124.

37

Appendix: Rules for Hoverfly sub-model

Development

Development of hoverflies is highly simplified abdth and death is minimised (see
below). The only development that occurs in thaletds the transition of larvae to

adults. In this, there is a 50% probability thevdrdly will be female (determined at

birth) and male hoverflies are not included in thedel from this stage onwards as
their activities are assumed not to influence tigribution of larvae and thus the
mortality of the aphids.

The transition from larvae to adult is modelledhvbhe assumption that the larvae
need to eat a minimum of 120 aphids in total tahesm weight at which they are able
to pupate (28 mg) (Ankersmat al. 1986). Thus, once this number of aphids has been
consumed by an individual larva it pupates and esoadult (if male it is then
removed from the model).

Reproduction

In this model oviposition occurs once within a $ingnt area (i.e. grid cell) per day.
This occurs providing aphids are present and tbation has no other larvae. It is
assumed only 1 egg is laid per day within the eall] the egg is assumed to become
larvae the next day. This is probably an underegt, however it can easily be
modified at a later stage. A suggested estimate eaup to 49 eggs within a fm
area per day, based upon Harreehl. (2007), where a high oviposition rate ©f
balteatus was observed when aphid-infested potato was stydienean of 48.9 eggs
per laying and per female). This study also fotivat no eggs were produced by the
hoverfly on healthy aphid-free plants.

Mortality

The scenarios shown here do not include adult figvexortality. Experiments with
mortality in the model showed that adult mortaltgs a high impact upon the
population dynamics of the syrphids and shouldrisduded in further developments
of the model.

Mortality of larvae occurs when no aphids are pnese feed them (possible if aphids
are consumed or are alate and fly away), otherihise is no mortality of larvae.

Movement and dispersal
Movement of syrphids and oviposition is key to thi@del. A number of rules
govern the oviposition of larvae by female adulpsyds:

» Search for prey is not random (Kindlmann and Diz883).
* Refrains from ovipositing in the presence of causfic larvae (Hemptinnet
al. 1993).

» Avoids laying eggs close to old aphid coloniespggized by the presence of
winged aphids (Hemptinret al. 1993).

In this model rules govern a non-random searchpfey, where eggs are only laid

where aphid colonies are present and ovipositiomsdwt occur where larvae are
already present. The model does not include atoutecognise old aphid colonies at

38

present, but this information is available in thedal and could be included at a later
stage.

Basic movement

A model of syrphid predator movement proposed bgeka and Odell (1987) is that
predators move at constant speed but change dineatimovement more often when
satiated (area restricted search) and that inciagsey density increases the feeding
rate and satiation of the predators (appliedUtmleucon nigrotuberculatum and
Coccinella septempunctata). However, this may have restricted applicabitiythe
early stages of aphid colony development (Kindlmand Dixon 1993) and it has not
been proved that this strategy is optimal (it wdstarily chosen).

This model will use a simplified movement rule tdhsgon this principle - the adult

female hoverflies move in a random direction, budven a greater distance if no
aphids are present or the crop is early in seatomas been shown that crop growth
stage and habitat type may influence syrphid mowenpatterns and oviposition

(Powellet al. 2004), providing the foundations for this behavad rule.

It is assumed that hoverflies move between 4 antkties a day (given that a mark-
recapture study of Holloway and McCaffery (1990)rid hoverflies moved between
20-30m in a 5 day period). Thus, in the modelcuked' movement in favourable
habitat (margins or late season crop) or arounddapblonies is set between 0-4 m
and in unfavourable habitat (early season crop)ammnt is set at 4-6 m per day.

Foraging optimisation

It has been suggested that the model of KareiveCatedl (1987) can be improved by
adding terms to describe foraging optimisation (Kimann and Dixon 1993). This
will enable the model to function at later stagésghid colony development. The
ability of the predator to assess the present andd quality of an aphid colony for
their larvae should be included in the model. Hfect of more than one aphid
colony present in a landscape should also be ceresid- the presence of other
colonies is likely to reduce the optimal numberegfgs laid by the predator in a
particular aphid colony (Kindlmann and Dixon 1993).

This is applied in the model through a simple bétaal rule: if there are aphids
present within a given 1focation but other larvae are also present thetftyvdoes
not oviposit but moves on a short distance.

Parasitation/predation

A very simple model of aphid consumption was cartded based on the research of
Ankersmitet al. (1986), Equation 1. More recent, complex moegist (e.g. the use
of a Holling type-lll function by Tenhumberg (1995however the nature of the
model presented here at this stage does not ratjisreevel of complexity.

MORT = (0.311@"%¥%9 x D+ (2,512 %52)

Equation 1: Where MORT is the predation rate per dg; A is the age of the Syrphid larvae in
days; D is the density of aphids per ci(which is scaled down from 1rfiin the model).

39

