

 LAND AND WATER

Review of The Invisible
Modelling Environment
(TIME)

Ross Searle and Dave Penton

CSIRO Land and Water Science Report 4/12
15 December 2012

CSIRO | 0BIntroduction and Purpose of Review ii

CSIRO Land and Water Science Report series ISSN: 1834-6618

Citation
Searle R. and Penton D. (2012) Review of the Invisible Modelling Environment. CSIRO, Australia.

Copyright and disclaimer
© 2012 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication
covered by copyright may be reproduced or copied in any form or by any means except with the written
permission of CSIRO.

Important disclaimer
CSIRO advises that the information contained in this publication comprises general statements based on
scientific research. The reader is advised and needs to be aware that such information may be incomplete
or unable to be used in any specific situation. No reliance or actions must therefore be made on that
information without seeking prior expert professional, scientific and technical advice. To the extent
permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for
any consequences, including but not limited to all losses, damages, costs, expenses and any other
compensation, arising directly or indirectly from using this publication (in part or in whole) and any
information or material contained in it.

CSIRO | 0BIntroduction and Purpose of Review 3

Contents

Acknowledgments .. 5

Executive summary... 6

1 Introduction and Purpose of Review .. 7

2 History of TIME .. 8

3 What is TIME ... 9
3.1 Defining TIME in Terms of the Code Base... 11
3.2 Functionality ... 11
3.3 TIME Context .. 12

4 Intellectual Property Rights Considerations ... 15

5 Systems Infrastructure .. 16
5.1 Arrangements Post June 2012 .. 17

6 Governance Framework .. 18

7 Critical Dependencies .. 19

8 Code Base Quality and Health ... 20

9 SWOT Analysis of TIME ... 23
9.1 Strengths ... 23
9.2 Weaknesses .. 24
9.3 Opportunities .. 25
9.4 Threats .. 26

10 Alternatives to TIME .. 28

11 Potential Directions ... 30
11.1 Building on Existing Functionality ... 30
11.2 New Functionality & Research .. 31

12 Recommendations .. 33

13 References ... 34

14 Appendix 1 : TIME Functionality Table .. 36

CSIRO | 0BIntroduction and Purpose of Review 4

Figures
Figure 1. Main Architectural Layers of TIME (Rahman et.al., 2003) .. 10

Figure 2. Relative size of the various functional components (percentage of total lines of code) within
the TIME code base. ... 12

Tables
Table 1. List of C# projects that make up the TIME code base .. 11

Table 2. Number of TIME users per organisation ... 13

Table 3. Number of TIME users per Australian political jurisdiction .. 13

Table 4. Systems infrastructure summary .. 17

Table 5. Planned systems infrastructure configuration post June 2012 .. 17

Table 6. Example of the Code Metrics analysis of the TIME code base (green – good, yellow – acceptable,
red - poor) ... 20

Table 7. Test coverage as percentages over the TIME code base .. 21

CSIRO | 0BIntroduction and Purpose of Review 5

Acknowledgments

As this review is CSIRO focussed, the majority of input gained throughout the review was sourced from
CSIRO staff, with additional inputs from a limited group of key external stakeholders. The main mechanism
for gathering input to the review was a workshop held on the 16th of May 2012 at CSIRO, Canberra, bringing
together the key CSIRO technical staff involved in TIME development as well as key eWater staff. Attendees
at this workshop included Dave Penton, Jean-Michel Perraud, Tim Smith, Dominic Snowden, Andrew
Freebairn, Ben Leighton, Robert Bridgart, Nick Murray, Matt Stenson, Dave Penton, Ramneek Singh and
Ross Searle from CSIRO and Joel Rahman and Geoff Davis representing eWater.

The authors wish to specifically acknowledge the assistance of Geoff Davis (eWater) for his invaluable
assistance in providing detailed information to the review.

CSIRO | 0BIntroduction and Purpose of Review 6

Executive summary

The Invisible Modelling Environment (TIME) is a model development framework, supporting model
developers in the creation and testing of algorithms and in the development of standalone modelling
applications (Rahman et al., 2005). TIME provides a framework for spatial and temporal data analysis. TIME
has been developed under the sponsorship of eWater CRC and its predecessor CRC for Catchment
Hydrology. As well as providing a modelling framework, TIME supports model users with a range of data
analysis and management, model processing and visualisation tools. TIME comprises a collection of .NET
classes, libraries and visualisation components for developing models and applications.

With the completion of the eWater CRC and transition to eWater Limited in July 2012, it is opportune for
CSIRO to strategically review and assess its position in relation to the future development of TIME going
forward. The purpose of this review is to consider the current technical capacity of the code base, how
short term transitional arrangements will be implemented and potential future directions that CSIRO may
wish to pursue with TIME. This review is intentionally internally focussed on CSIRO. We acknowledge the
broader TIME development community and the broad range of applications built upon TIME, however the
focus of this review is CSIRO’s use of and future involvement in the development of TIME.

CSIRO has invested heavily in the development of TIME and has provided much of the intellectual input as
well as the majority of the coding effort. CSIRO is actively involved in the continued development of TIME
and supports the development and maintenance systems.

At present, the TIME code base (as defined in section 3.1) contains approximately 360,000 lines of code.
There are 2040 individual classes (a grouping of lines of code that perform a specific function), and 16968
methods (code that performs actions). The TIME code base currently has 153 registered users. Of these 57
are considered to be active. All these users are based in Australia. These users are distributed over 31
individual organisations (Table 2) across 5 States. There are 84 federal agency, 27 university, 22 state
agency and 19 private sector registered users.

TIME is a core component of a large range of formal software products, as well as numerous research
programs. Currently the TIME code base is incorporated into approximately 23 eWater supported
applications. These products have currently been downloaded from the eWater Toolkit web site a total of
38,360 times. The “eWater Source” products are a major focus of this product range and are extensively
used by government and private enterprise in addressing water quantity and quality policy questions. TIME
is also integrated into a range of CSIRO specific products and projects such as the “Hydrologists
Workbench” and the Australian Water Resources Assessment (AWRA) system, a continental water balance
monitoring system that is being developed jointly by CSIRO and the Bureau of Meteorology.

A review of the strengths and weaknesses of TIME was conducted and this was used to guide suggestions
for improvements to the existing code base. A variety of research and development activities to further
enhance the functionality of TIME is also presented. Most if not all of these suggested activities will require
significant investment and commitment. With this investment, the TIME environment would better support
ongoing science in a broader suite of domains (e.g. soils, agriculture and environment).

It is recommended that CSIRO should remain as an active participant in the further development of the
TIME code base. Given the significant investment and the broad range of internal and external
dependencies on TIME, it would not be prudent to abandon the development and maintenance of the TIME
code base. A formal roadmap for the development of TIME should be established. It is also recommended
that formal governance arrangements should be put in place to guide future development and
maintenance of the TIME code base.

CSIRO | 0BIntroduction and Purpose of Review 7

1 Introduction and Purpose of Review

The Invisible Modelling Environment (TIME) is an environmental modelling software framework (Rahman et
al., 2003) developed through collaborative activities under the CRC for Catchment Hydrology and its
successor eWater CRC. CSIRO has been heavily involved in the TIME modelling framework development
since its inception in 2003. CSIRO has directly contributed much of the scientific knowledge and code
development that has gone into the TIME code base.

With the completion of the eWater CRC and transition to eWater Limited in July 2012, it is opportune for
CSIRO to strategically review and assess its position in relation to the future development of TIME going
forward.

The purpose of this review is to consider the current technical capacity of the code base, how short term
transitional arrangements will be implemented and potential future directions that CSIRO may wish to
pursue with TIME. This review is intentionally internally focussed on CSIRO. We acknowledge the broader
TIME development community and the broad range of applications built upon TIME, however the focus of
this review is CSIRO’s use of and future involvement in TIME.

TIME is core to numerous existing software applications and scientific projects within Australia. At the time
of initial development, TIME enabled a major leap forward in model framework development and
consequently, how modelling applications in the hydrology domain were developed. In the ensuing years,
much progress in this domain has occurred around the world. Given the ubiquitous nature of the modelling
issues TIME addresses, many other groups worldwide have also implemented solutions to various
components of the modelling framework paradigm.

From CSIROs perspective, it is important to understand how TIME fits into the current broader modelling
framework domain and assess the relevance of TIME. This review does not attempt to conduct a
comprehensive analysis of all existing environmental modelling software frameworks, but rather to assess
the functionality of TIME in regard to similar efforts in this domain.

CSIRO | 1BHistory of TIME 8

2 History of TIME

With the increased utility of personal computing resources during the 1980s opportunities arose to
undertake problem analysis through the development of purpose built computer models. The hydrology
domain was a particular area of focus for such activity. The nature of problems addressed by these purpose
built models was diverse and ranged across scales both temporally and spatially including discrete events,
long term averages, daily and seasonal dynamics, point and spatial estimates and total catchment
outputs(Rahman et al., 2003). Each of these models tended to written from scratch and often developed
unique solutions to common functional requirements. They were written in a vast range of programming
languages, computer platforms and employed problem specific design approaches

Scientists within the Cooperative Research Centre for Catchment Hydrology and CSIRO identified this
divergence of approaches and duplication of effort and set about exploring solutions to this issue. Domain
centric software modelling framework development was at the time an active area of research and
development across a number of disciplines.

In 2002 a comprehensive review of existing purpose built hydrologic models and frameworks was
undertaken by the CRC for Catchment Hydrology. As well as this, a detailed user requirement survey was
carried out within the Australian hydrologic modelling community(Marston et al., 2002). As part of this
process, several frameworks were evaluated and tested. None of the existing frameworks was deemed
suitable to meet the requirements determined via the review process. With advances in software
development technologies, an opportunity arose that made it feasible to develop a new framework that
better suited the needs of environmental modellers within and beyond the CRCCH (Rahman et al., 2003)

TIME was developed to support several key stages of model development. TIME was designed to support
the development of new model components, using one of a number of languages, along with the testing of
those model components in a generic test-bed, providing a high level of data handling, analysis and
visualisation. TIME attempted to supports the integration of modules into applications with highly
customised, visually rich user interfaces, utilising a number of re-useable components for data handling and
visualisation (Rahman et al., 2003).

Over the ensuing years TIME evolved to support the requirements of a broad range of applications. Both
the CRC for Catchment Hydrology and eWater CRC had a focus on the development of software tools to
support researchers and land managers in decision making. These products make up what is now known as
the eWater Toolkit (http://www.toolkit.net.au/). Functionality tended to be added to TIME as the need
arose supporting an ever expanding user base of these tools. Today, TIME is a core component of 23 formal
software products, as well as numerous research programs.

The vast majority of the TIME software development has been undertaken by CSIRO software developers
within the Land and Water Division. As well as developing the core TIME modelling framework many of
these developers have also been involved with the coding of various toolkit products. These developers and
associated staff have also been responsible for training a broad range of users in TIME development
methods and processes.

At the time of its inception, there was no other modelling framework readily available that included the
suite of capabilities, functionality and design principles that were encompassed by TIME.

http://www.toolkit.net.au/�

CSIRO | 2BWhat is TIME 9

3 What is TIME

The Invisible Modelling Environment (TIME) is a .NET based model development framework, supporting
model developers in the creation and testing of algorithms and in the development of standalone
modelling applications (Rahman et al., 2005). TIME provides a software framework for spatial and temporal
data analysis.

TIME automates most of the repetitive tasks of model development, including the automatic generation of
user interfaces, the management and analysis of time series data and the handling and visualisation of
temporal and spatial data. The TIME software framework is designed to allow model developers to
concentrate on the development and application of models, without having to invest heavily in developing
code to handle the more routine tasks of data IO and visualisation.

Environmental modelling frameworks support scientific model development by providing model developers
with domain specific software libraries which are used to aid model implementation (Lloyd et al., 2011).

Frameworks for environmental modelling typically support rapid model development and integration by
generic, re-useable components for data handling and visualisation. Environmental modelling frameworks
range from high level abstract architectures with little or no domain dependence such as Common
Component Architecture (Armstrong et al., 1999) and OpenMI (Gregersen et al., 2007) through to more
invasive, domain specific frameworks such as Tarsier (Watson and Rahman, 2004). TIME attempts to strike
a balance between providing a range of concrete methods and tools to ease model development while
being implemented in framework not specifically tied to an individual scientific domain.

At the highest level of abstraction, TIME is represented as a layered system (Figure 1), with components in
each layer interacting with the layers below it. Each layer contains a family of components and, in some
cases, small frameworks supporting a specific aspect of model development.

CSIRO | 2BWhat is TIME 10

Figure 1. Main Architectural Layers of TIME (Rahman et.al., 2003)

When it was initially developed, TIME differed from most existing modelling frameworks in a number of
ways, particularly in its use of metadata to describe and manage models as well as the flexibility given to
model developers to ‘pick and choose’ the components of TIME relevant for a given project. Functionality
that is embedded as an immutable ‘core’ layer in other frameworks is included in applications under TIME
on an as-needed basis using optional, interchangeable components. This flexibility extends to components
that manage data and models, recognising that one approach does not necessarily fit all applications
(Rahman, et al., 2003).

TIME makes use of the metadata capabilities of .NET to automate several tasks, such as user interface
generation, that are not possible with many modelling frameworks based on commercial development
tools. By automating these common tasks, the model code does not become directly coupled to the
implementation of those tasks, relieving model developers from code maintenance tasks stemming from
framework evolution (Rahman, et al., 2003).

TIME attempts to find a middle ground, by using a commercial development platform (.NET) that is easily
accessible to users. .NET allows the elementary integration of components written in different languages,
including Visual Basic, Fortran and C++ (Meyer, 2001).

TIME supports the deployment of models as graphical applications, command line applications and active
web pages.

CSIRO | 2BWhat is TIME 11

3.1 Defining TIME in Terms of the Code Base

For the purpose of this review and to avoid confusion on the exact scope of discussion, it is useful to
explicitly define what parts of the full eWater code base are considered to encapsulate the TIME code.
Currently the TIME code base is managed as part of a much larger code base encompassing a much broader
scope of activity around the whole suite of eWater Toolkit products. The larger code base contains
products such as eWater Source and specific applications contributed by the various eWater partners.
Currently there are approximately 28 products in the broader managed code base. Most if not all of these
products have dependencies on the TIME code base.

The TIME code base has been developed in parallel with this range of eWater products, hence the exact
boundary of exactly what should be included in the TIME code base can be blurred. While there is no
definitive answer as to the exact lines of codes that make up the TIME code base we can make a reasonably
precise attempt to define it in terms of C# projects contained in the code repository. The projects that
essentially make up TIME have been agreed to by participants in the review as those that are listed in Table
1.

Table 1. List of C# projects that make up the TIME code base

TIME Tools.GRID

Amnesia Tools.Visual

DataAnalysis Visualisation

NetCDF Winforms

ScenarioManagement WebFormComponents

Testing.UnitTests VisualTime

TIME.Tools TIME.NetLP

3.2 Functionality

As well as providing a modelling framework, TIME supports model users with a range of data analysis and
management, model processing and visualisation tools. TIME comprises a collection of .NET classes,
libraries and visualisation components for developing models and applications (Murray et al., 2006). In
computer programming, a class is a grouping of lines of code that perform a specific function within the
program.

TIME has native support for roughly 70 time series, image and GIS file formats for manipulating data
without needing to write conversion routines. TIME also has a range of visualisation controls that support
display and interaction with layers, graphics, and parameter manipulation. The TIME libraries also contain
mathematical and statistical routines.

The functional components of TIME can be broken down into the following broad groups of classes:-

• Core – This is the main functional component of the TIME code base. It is the “Kernel” part
depicted in Figure 1. Core is essentially the model running, unit handling and modelling framework
components.

• Applications – command line and Windows forms based GUI for access to some TIME functions.
• Data Analysis – temporal and spatial data analysis routines. Raster and vector analysis routines,

terrain and hydrological analysis, data conversion routines, time-series analysis routines.
• Data Types – spatial and temporal data IO handling. TIME supports a broad range of spatial and

temporal data types.

CSIRO | 2BWhat is TIME 12

• Scenario Management – framework for representing different model realisations.
• Science – analysis routines for linear algebra, hydrology, mathematical solvers, probability,

uncertainty and statistics.
• Tools – a diverse range of ancillary model tools and utilities.
• Tests – unit tests covering the TIME code base.
• Visualisation – functionality for viewing spatial and temporal data sets.
• Webforms – prototype methods for enabling TIME on the web.
• WinForms – suite of re-usable windows forms components to aid in typical modelling applications.

A more detailed listing of the specific functionality within TIME is given in Appendix 1 : TIME Functionality
Table. For a detailed description of the complete functionality and use of TIME please refer to the TIME
Reference Manual (Murray et al., 2006).

A breakdown of the relative size of each of functional group in terms of coding effort (percentage of total
lines of code) is given in Figure 2.

Figure 2. Relative size of the various functional components (percentage of total lines of code) within the TIME code
base.

3.3 TIME Context

At present the TIME code base contains approximately 360,000 lines of code. There are 2040 individual
classes, and 16968 public methods and properties.

If we use some back of the envelope calculations we can get a very rough idea of the size of the financial
investment in the development of the TIME code base. If we consider that the development of the TIME

Applications Core

DataAnalysis

DataTypes

Scenario
Management

Science

Tests

Tools

Visualisation

Webforms

Winforms

Percentage of TIME code Base

Applications

Core

DataAnalysis

DataTypes

ScenarioManagement

Science

Tests

Tools

Visualisation

Webforms

Winforms

CSIRO | 2BWhat is TIME 13

code base occurred over an 8 year period and multiply this by some rough staff costings, we can estimate
that at least $5 million has been invested in the development of TIME. These calculations do not take in to
account ongoing management and maintenance and are based on some very loose assumptions but are
intended to only give a ballpark figure. This figure presented is most likely at the lower end based on
conservative cost assumptions used.

The TIME code base currently has 153 registered users. Of these 57 are considered to be active users (Davis
and Penton, personal communication). This is a similar number reported by Rahman et.al. in 2005. All these
users are based in Australia. These users are distributed over 31 individual organisations (Table 2) across 5
states. There are 84 federal agency, 27 university, 22 state agency and 19 private sector registered users.

Table 2. Number of TIME users per organisation

Organisation No. of Users Organisation No. of Users

CSIRO 71 Catchment Simulation Solutions 1

UC 14 United Water International Pty Ltd 1

BMT WBM 10 Department of Water SA 1

QDERM 8 DNR NSW 1

Melbourne Uni 7 Griffith University 1

SKM 6 EPA SA 1

Bureau of Meteorology 5 Flowmatters 1

eWater 5 G-M Water 1

MDBA 3 ANU 1

QEPA 3 SARDI (SA) 1

WA Water 2 Melbourne Water 1

Uni Newcastle 1 Monash Uni 1

Australian Rivers Institute,
Griffith University

1 NSW Office Water 1

UQ 1 SA Department for Water 1

University of Adelaide 1 DPI 1

Table 3. Number of TIME users per Australian political jurisdiction

Jurisdiction No. of Users

Federal 113

QLD 14

VIC 11

SA 5

ACT 5

NSW 3

WA 2

CSIRO | 2BWhat is TIME 14

TIME is a core component of a large range of formal software products, as well as numerous research
programs. Currently the TIME code base is incorporated into approximately 23 eWater supported
applications. These products have currently been downloaded from the eWater Toolkit web site a total of
38,360 times. The “eWater Source” range of products are a major focus of this product range and are
extensively used by government and private enterprise in addressing water quantity and quality policy
questions. TIME is also integrated into a range of CSIRO specific products and projects such as the
Australian Water Resources Assessment (AWRA) system, a continental water balance monitoring system
that is being developed jointly by CSIRO and the Bureau of Meteorology.

CSIRO | 3BIntellectual Property Rights Considerations 15

4 Intellectual Property Rights Considerations

The TIME code base since its inception has been developed in a collaborative environment under the
eWater CRC and its predecessor the CRC for Catchment hydrology. As a result of these collaborative
arrangements the intellectual property (IP) of the code base has always been held by the CRCs in a shared
rights arrangement.

The CRC for Catchment Hydrology (CRCCH) held the IP in trust from the CRCCH partners. With the
conclusion of the CRCH in 2005 all IP went into a trust, which is now administered as background IP on
behalf of CRCCH partners by eWater Ltd. The IP transferred was formally captured in an IP register
including the Catchment Modelling Toolkit and associated models as well as the source code for E2 and
other models that resided on CSIRO’s subversion system. Much of this IP exists as code, which resides
within the TIME repository (developed as part of the CRCCH). With the establishment of eWater CRC in
2005, a separate IP register in the trust was created to hold eWater CRC IP created from 2005-2012. This is
also administered on behalf of eWater CRC partners by eWater Ltd. Since 2005, the TIME codebase has
continued to grow as a function of CSIRO/eWater activities. However, some (small) additional code has
also been added to TIME, through development that occurred outside the agreed CSIRO/eWater activities.

An eWater CRC IP register has been developed and continuously been updated by the eWater CRC to date,
CSIRO staff have been deeply involved in the formulation of the eWater CRC IP register. There are few
impediments to the use of IP as at 30 June 2012 as per the eWater participants agreement (agreement
terms 22 and 23). The eWater IP as of 30 June 2012 belongs to eWater partners including CSIRO and all
commercial rights will remain with eWater. All eWater CRC partners have access to the IP in trust
generated to June 2012. CSIRO remains free to utilise this IP as part of its ongoing/usual business activities.

Moving forward from 1/7/2012, eWater intends to operate as a not for profit company in a partnership
model, whereby the partners are given access to the core model code (and IP). It is intended for CSIRO and
eWater to move ahead in a special partnering arrangement, where CSIRO is the ‘preferred’ development
partner for substantial model development. The form and content of this is being drafted in a “Letter of
Agreement” between the two organisations. This agreement confirms CSIRO’s ability to take the existing
software and develop it further, both independently and with eWater, and at the same time exercise full
usage of the software in its usual business practices. It is also understood that neither party wants to have
independent model platforms developed, and the anticipated situation is for development to be linked and
co-ordinated between them.

CSIRO | 4BSystems Infrastructure 16

5 Systems Infrastructure

The current TIME coding environment utilises a suite of commercial and freeware software platforms to
enable code development workflows. These systems form the basis of the workflows developed around
TIME and the broader “eWater Source” coding. The use of this software suite enables quality control in a
distributed development environment. Previous to July 2012 these systems are all run on CSIRO hardware.

 Components of the development environment include :

Visual Studio http://www.microsoft.com/visualstudio/en-us

Microsoft Visual Studio is the Integrated Development Environment (IDE) utilised by coders contributing to
the TIME code base. Its supports a number of different development languages including C#, VB.NET, F#,
Python and C++.

Subversion http://subversion.apache.org/

Subversion is an open source version control system developed by the Apache Software Foundation.
Subversion centrally manages the versioning of the code base developed in a distributed environment.
Currently the source code repository manages 4.3 million lines of code. Both CSIRO internal developers and
external developers contribute to this managed code base. The repository is backed up daily on a CSIRO
server but in effect the source code is backed up on every user’s local machine.

Jira http://www.atlassian.com/software/jira/overview

Jira is a web based issue tracking software used for all major software development projects in
eWater/CSIRO collaborations. Used as a management tool to assign work tasks and track the progress of
tasks. Jira currently hosts 50 individual projects, however not all are currently active.

Confluence http://www.atlassian.com/software/confluence/overview

Confluence is the wiki used by the developers. It allows easy communication of information amongst the
developers.

TeamCity http://www.jetbrains.com/teamcity/

TeamCity is a continuous integration server and distributed build management tool. When a change is made
to any code e.g. a model in RiverManager is modified, TeamCity recognises this and then sends a job off to
compile the code, run unit tests and regression tests to make sure the change doesn't change anything
unexpected and the code still builds. When this system detects problems the appropriate developers are
automatically alerted.

Crucible –http://www.atlassian.com/software/crucible/overview

Crucible is a tool that assists developers in conducting code reviews.

http://www.microsoft.com/visualstudio/en-us�
http://subversion.apache.org/�
http://www.atlassian.com/software/jira/overview�
http://www.atlassian.com/software/confluence/overview�
http://www.jetbrains.com/teamcity/�
http://www.atlassian.com/software/crucible/overview�

CSIRO | 4BSystems Infrastructure 17

Table 4 summarises the cost of each of the components of the current development infrastructure.

Table 4. Systems infrastructure summary

Software Provider Cost Location

Visual Studio Microsoft $481 per user
(approx 20 users)

Individual PCs

Subversion Apache Software
Foundation

freeware https://subversion.toolkit.net.au/svn

Jira Atlassian $4000 (51-100
users)

http://jira.toolkit.net.au

Confluence Atlassian $1600 (26-50 users) http://confluence.toolkit.net.au

TeamCity Jet Brains $3000 http://teamcity.toolkit.net.au

Crucible Atlassian $1200 (11-25 users)

5.1 Arrangements Post June 2012

With the establishment of eWater Limited after June 2012, a number of changes will occur to the setup and
location of the various systems. The system setup after June 2012 is summarised in Table 5. eWater will
take responsibility for a number of the existing systems, while CSIRO will have to continue supporting a
number of the existing systems. A more detailed explanation of the new system setup can be found at
http://confluence.toolkit.net.au/display/PRT/Handover+Process.

Table 5. Planned systems infrastructure configuration post June 2012

Software Post 2012

Visual
Studio

Same

Subversion eWater will host via an external service provider. Alternative source version control
software is currently be investigated by eWater staff. Depending on the outcomes of this,
the Subversion repository may be moved to a different software platform.

Jira eWater will extract their required projects and transfer the remaining projects to IM&T
supported Jira at zero cost.

Confluence eWater will host all eWater relevant projects, and the remainder will be transitioned to
IM&T supported instance at zero cost.

TeamCity eWater have purchased a new server license and 9 agent licenses. CSIRO have purchased
a new server license and 12 agents.

Crucible eWater will not extract anything from crucible. Transitioning to IM&T systems at zero
cost.

http://jira.toolkit.net.au/�
http://confluence.toolkit.net.au/�

CSIRO | 5BGovernance Framework 18

6 Governance Framework

Throughout the development of TIME there has been no formal governance structure in place to provide
strategic guidance. At the strategic level, apart from adhering to the original conceptual framework and
design principles, the ongoing development of TIME has tended to be guided by application needs and
direct user feedback. Future strategic development needs have tended not to be addressed in a structured
fashion.

A relatively strong governance of TIME has tended to occur at an operational level. A group of 3 or 4 senior
developers provide oversight regarding major changes and additions to the code base. Once again there is
no formal governance structure, but rather an informal arrangement, where these senior developers are
consulted by others when significant alterations are being considered.

The day to day governance of changes to the TIME code base are facilitated by the systems architecture as
described in section 5. The version control system has defined levels of access control that can be assigned
to all developers. By default all new users are only given read permission to the code base. There has been
a strong ongoing commitment to providing an appropriate level of training to all new users so they are able
to quickly learn the concepts and conventions used by the TIME development team. As users become more
skilled in the coding of TIME they can be granted read/write permission if deemed appropriate by the
senior developers. Developers with read/write permission to the repository are termed “trusted”
developers. These trusted developers are free to make additions and changes to the code base as they
deem appropriate.

The code base is covered by a comprehensive set of unit test that are run whenever code changes are
committed to the repository. These tests automatically flag when problems arise and developers are
notified of these problems. This enables quick resolution of potential issues.

There is also a process of code review that is undertaken within the development team. The code review
process allows an opportunity for developers within the team to receive feedback on the quality of their
work from within the team. It is also a good way of sharing information and knowledge within the team.
Over the development period of TIME, the application of this code review process has been variable.

As a consequence of this training, and “trusted” developer paradigm, the coding development tends to be
managed by exception. This approach to development leads to a flexible and more agile development
process, where it is more efficient to deal with exceptions as they arise rather than forcing a rigid
development procedure on developers.

It is recognised by the developers that these governance arrangements are typically most successful when
applied to relatively small teams working across a relatively small number of individual projects. Application
of these same governance approaches to larger development environments can be more challenging and
typically requires concerted effort to make them effective.

CSIRO | 6BCritical Dependencies 19

7 Critical Dependencies

There have been no critical dependencies identified for TIME, however they are some strong dependencies
that may be worth reflecting on.

The large majority of the TIME code base is written in the C# programming language. Whilst C# is an
industry standard language at the present, programming languages and software development concepts
are rarely static. The Windows environment is about to undergo some significant alterations and the
impacts of these on programming paradigms is as yet unclear. Early public announcements around the
release of the latest version of the Windows OS, suggested a reduced level of support around C#.Net into
the future, however this scenario now seems increasingly unlikely.

C# is a proprietary programming language of Microsoft. Thus, in theory the future of the C# programming
language is mostly controlled by this one private company. That said, there is an open source alternative to
C# called Mono. Whilst TIME is not currently fully compatible with Mono, it would not be a major effort to
make TIME fully Mono compatible. This may result in some loss of functionality relying on third party
components within TIME. Nevertheless, some recent significant TIME-related developments, like the
AWRA-L data assimilation, have been run on Mono and Linux, without significant loss of functionality.

Most of the software development team responsible for the coding of TIME are part of the Environmental
Information Systems (EIS) group, within the CSIRO Division of Land & Water. Thus there is a strong
ownership and knowledge of TIME amongst a relatively confined group. In large organisations such as
CSIRO reorganisations of work groups over time is the norm. If the EIS groups focus or function was to be
diminished, one strong driver for the development of TIME would be reduced. Adverse impacts of
dependency are somewhat mitigated by the presence of strong partner organisations also involved to
varying degrees in the development of TIME. eWater Limited in particular has just recently acquired
significant intellectual capacity and capability in relation to the TIME code base.

CSIRO | 7BCode Base Quality and Health 20

8 Code Base Quality and Health

The TIME code base has evolved over a period of approximately 10 years. During this time, over 50
developers from a range of organisations in numerous geographic locations working on a large number of
disparate projects have contributed to the TIME code base. Such a broad collaborative effort will always
put pressure on the optimal management of a code base. To deal with this, the TIME development team
have put in place a variety of systems and procedures to ensure the best possible management of the code
base given the inherent limitations of the environment in which the team work.

There are a range of automated code assessment tools which are run at regular intervals across the code
base to analyse the code base health. Key to testing the day to day health of the code base is the TeamCity
continuous build environment. As code changes are committed to the code base, test builds are fired
within the TeamCity environment to ensure these changes have not had a deleterious impact. If problems
are found, appropriate people are automatically notified and fixes are implemented.

As well as the continuous build environment there are analyses that are run across the code base to test
the health and quality of the code base. Table 6 gives an example of the type of output that can be
generated from the code metrics analysis to assist in pinpointing areas of the code base that require work
to optimise. To fully utilise the value of these analyses one must drill down into the lower levels of the code
base. The summary table presented is merely an example and does not reflect the understanding to be
gained by fully exploring and interpreting this analysis. Whilst one can not necessarily ascribe a definitive
health rating using these code metrics, they provide developers with powerful analysis to target code
improvement.

Table 6. Example of the Code Metrics analysis of the TIME code base (green – good, yellow – acceptable, red - poor)

Assembly Maintainability
Index

Cyclomatic
Complexity

Class Coupling Depth Of
Inheritance

Lines Of Code

TIME.dll 80 95 24 7 810

TIME.DataAnalysis.dll 70 42 35 7 86

TIME.Tools.dll 84 27 17 4 235

TIME.Tools.Visual.dll 73 66 31 10 265

TIME.Visualisation.dll 80 28 19 7 83

TIME.Winforms.dll 79 25 23 9 123

The Microsoft Developer Network documentation defines the metrics as below (Microsoft, 2012) :

Maintainability Index – Calculates an index value between 0 and 100 that represents the relative ease of
maintaining the code. A high value means better maintainability.

Cyclomatic Complexity – Measures the structural complexity of the code. It is created by calculating the
number of different code paths in the flow of the program. A program that has complex control flow will
require more tests to achieve good code coverage and will be less maintainable. Less can be better.

Class Coupling – Measures the coupling to unique classes through parameters, local variables, etc. Good
software design dictates that types and methods should have high cohesion and low coupling. High
coupling indicates a design that is difficult to reuse and maintain because of its many interdependencies on
other types. Less is better.

CSIRO | 7BCode Base Quality and Health 21

Depth of Inheritance – Indicates the number of class definitions that extend to the root of the class
hierarchy. The deeper the hierarchy the more difficult it might be to understand where particular methods
and fields are defined or/and redefined. High is not good.

Lines of Code – Indicates the approximate number of lines in the code. A very high count might indicate
that a type or method is trying to do too much work and should be split up. It might also indicate that the
type or method might be hard to maintain. Lower can be better.

As well as assessing the quality of the code it is important to quantify the level of automated test coverage
over the code base. Table 7 presents a summary of the test coverage over the TIME code base. There
appears to be relatively good test coverage over most of the code base with room for improvement in
some of the visualisation classes. By nature these style of classes van be difficult to create useful
automated testing for, due to their interactive nature. It should also be noted that quality of the tests is an
important consideration. A hundred percent coverage of poor quality tests is not useful.

Table 7. Test coverage as percentages over the TIME code base

Assembly Class, % Method, % Statements, %

TIME 76.1% (535/ 703) 56.1% (3847/ 6858) 52.3% (34316/ 65572)

TIME.DataAnalysis 30.2% (42/ 139) 27.8% (247/ 890) 31.8% (4749/ 14946)

TIME.Tools 63.4% (161/ 254) 53.3% (1222/ 2293) 51.6% (8239/ 15960)

TIME.Tools.Visual 0% (0/ 80) 0% (0/ 1061) 0% (0/ 13361)

TIME.Visualisation 28.3% (36/ 127) 14.5% (207/ 1429) 14.5% (1410/ 9755)

TIME.Winforms 4.1% (12/ 290) 3% (105/ 3459) 3.1% (962/ 31279)

Just as important as reviewing statistical measures of code health, it is also wise to apply a common sense
review of the code base. During the developer workshop held in Canberra, a brief analysis of the structure
of the code base was conducted to determine the scope of the TIME code base being considered in this
review (Section 3.1). It was considered that there would be considerable benefit to be gained from a small
scale tidy up of the structure of the code base. Despite the best of efforts, some classes have been located
in illogical locations in terms of the overall solution structure. There are also obsolete and superfluous
classes that could be removed from the existing code base. This was not considered to be a task that should
be too onerous and with all of the organisational changes taking place it was thought that this would be a
worthwhile undertaking.

Another common measure often considered when reviewing code health is the level of documentation
associated with a code base. TIME has a User Reference Manual (Murray et al., 2006) and a set of TIME
Training Workshop Notes. Both of these documents are useful when starting out developing code in the
TIME environment. There is also a document currently in development focusing on how to write a plug-in.
There is also a reasonably comprehensive set of example code available for coding beginners. All of this
existing documentation tends to be targeted at entry level coders.

What TIME is missing is a broader overview document explaining the concepts and functionality of TIME for
less computer coding literate potential users. At present it is very difficult for a new comer to TIME to
actually understand the full extent of what TIME is capable of being used for unless they delve deep in to
the internals of the code base.

The actual TIME code base also tends to be poorly documented – although this can be variable. It is
accepted that modern programming languages are meant to be self describing to a certain extent, however
there needs to be more information in the code base about the code provenance and more descriptive
explanations of functionality of classes. At present, there is a steep learning curve for developers once they

CSIRO | 7BCode Base Quality and Health 22

move past entry level and at present this tends to be supported by knowledge exchange between coders,
not documentation contained within the code base.

CSIRO | 8BSWOT Analysis of TIME 23

9 SWOT Analysis of TIME

At the review workshop (May, 2012), an analysis of the strengths, weaknesses, opportunities and threats to
the TIME code base was undertaken. The methodology of a formal SWOT analysis was only loosely applied
but the SWOT categories provide a robust framework for structuring discussions. Presented below, in no
particular order is a summary of the analysis.

9.1 Strengths

• The vast majority of the TIME code base is written in Microsoft C#. The .NET programming
languages are considered to be industry standard languages amongst the IT community. Thus there
is good access to state of the art cutting edge functionality and a large pool of developers in
existence as well as a wide range of tools available.

• There is an open source alternative to Microsoft C#. Mono is an open source implementation of
Microsoft's .NET Framework based on the ECMA standards for C# and the Common Language
Runtime.

• C# has reasonable speed performance compared to other coding languages, even compared to
natively compiled languages.

• C# utilises the “Just in Time” compilation paradigm which in theory gives it platform portability
although currently there are limited realisations of this.

• It is relatively easy to obtain a minimal level of competence in programming within the TIME
environment.

• The TIME code base architecture was developed with a strong focus on making it very simple to
extend its functionality through the addition of modular components termed “Plug-ins”. Plug-ins
provide a powerful and flexible way to utilise the functionality of TIME. This capacity makes TIME a
highly extensible modeling and programming environment.

• Through the use of system reflection, TIME implements some powerful internal semantic features,
which add to the flexibility and robustness of TIME as a modeling framework. The use of semantics
is a highly desirable feature of modern modeling frameworks.

• TIME supports a broad range of both spatial and temporal data types from unique model specific
formats through to industry standard formats. Once again the extensibility of TIME makes it
relatively easy to add new data types as required. Currently TIME natively supports the input and
output approximately 45 data formats.

• The current TIME coding environment and systems (Section 5) provide a robust development
environment.

• TIME has 57 active developers. This makes for a relatively strong coding community with a degree
of forward momentum. At present, this development community is centered on a relatively small
domain area, and exists solely within Australia.

• The development of TIME has been driven by pragmatic requirements. Often the development of
TIME has been resourced by particular short term project funding, thus there has been a strong
emphasis on code focused on delivery of domain specific outcomes. This has lead to a range of
tools being developed driven directly by user requirements.

• The adoption of the TIME framework has been supported and underpinned by a strong emphasis
on delivering appropriate levels of training to potential users.

• New capability added often. With an active development community and an ever increasing user
community there is always new functionality and tools being added to TIME.

• The basic modeling framework concepts encapsulated by TIME are relatively straight forward, thus
are easy to pick up and apply.

CSIRO | 8BSWOT Analysis of TIME 24

• Some parts of the TIME code base have been thoroughly tested. Being incorporated into over 30
products that have been downloaded by 38,000 people and with over 50 active developers, the
TIME code base has been comprehensively applied and tested in real world applications. There is
also extensive unit test coverage of the code base itself to help identify problems as they arise.

9.2 Weaknesses

• Discoverability of the functionality of TIME is difficult. Unless you are a code developer it is very
difficult to determine the exact capabilities of the TIME modeling framework. Even if you are code
developer, it can still be difficult to ascertain the total of TIME functionality.

• Related to this is a lack of a readily useable front end to TIME. Currently there is no easy to use
front end for non programmers to use to access the full range of TIME functionality. Over the years
a number of products (Visual TIME, TIME Shell) have been developed to allow generic access to
TIME functionality but these products were not widely utilised and have slipped from use.

• It is difficult to pin point a stable release of TIME. Due to the dynamic nature of the development
environment change is continual and with no defined release cycle it can be very difficult to know
exactly which version of TIME you are using.

• TIME is not very efficient at dealing with large datasets. Attempts have been made to introduce
methods for efficiently handling large data sets but these are not always optimal and may not
follow the most modern design principals and paradigms.

• TIME is largely not thread-safe. The basic framework architecture of TIME was developed before
threading approaches became common. Hence there is only limited support to ensure thread safe
execution.

• As with threading. TIME does not support parallel and or distributed processing very well. Once
again, these computing approaches were not common when TIME was conceived and thus the
basic framework does not have intrinsic support for these computing approaches. There is no
simple “one size fits all” solution to parallelisation and it is unlikely that any sophisticated modeling
framework can be made ubiquitously parallel processing capable.

• There has been limited or no real uptake of TIME by the broader scientific community. One of the
original aspirations of TIME was to provide a modeling framework that was very flexible and
extensible without the practitioner requiring high level programming skills. However, training
attracted mostly software developers and subsequently most users of TIME typically have a strong
coding background.

• C# does not tend to be the preferred programming language of most scientists. Languages with
interactive capabilities such as Python and R are emerging as the preferred languages of the
general scientific community. While an attempt was made to provide an interactive console in
VisualTIME, and R and Python have been previously used in close conjunction with TIME, a lot of
potential is unrealized.

• There is no fully implemented scripting language interface to TIME. A scripting interface call “Boo“
was partially implemented but has never been utilised to any great extent. Scripting is common in
many scientific work flows.

• The TIME documentation is not complete. Although there are good training notes and a user guide
there is no comprehensive piece of documentation that describes all of the functionality and
concepts of TIME.

• Unit test coverage is not complete.
• TIME still contains calls to obsolete C# objects and data structures. While not a necessarily negative

situation the more modern alternatives are considered to be better coding practice.
• Some parts of the TIME code base have Windows operating system dependencies. This reduces the

deployment opportunities, thus reducing the potential user community.

CSIRO | 8BSWOT Analysis of TIME 25

• Provenance of the code base is poor: There is often very little description of the source and
derivation of many of the algorithms. Components are not self-describing.

• There is limited support for self describing data sets such as NetCDF and no support for data
transport architecture and protocols such as OPeNDAP (Cornillon et al., 2003). Since the inception
of TIME, the scientific and IM&T communities have driven the development of a range of efficient,
self describing data types and data access methods. TIME has not necessarily kept up with these
advances.

• There is no perceived long term “roadmap” or development plan for TIME. One internal developer
has remarked during the review that he is specifically excluding the use of TIME from products he is
involved in developing, that would be eminently amenable to the use of TIME, as he had no
confidence in the long term support for the code base. This is not a desirable situation as it leads to
inefficiencies, duplication and fragmentation of effort and resources.

• TIME is perceived to be by some practitioners, as domain specific i.e. hydrology/river systems
• The development of TIME has largely been sponsored by on major client group, that being eWater

and its predecessors. Thus some opportunities to incorporate additions of functionality from
Source Urban and other areas of closely related code development have been missed.

• The code base is susceptible to becoming “brittle”. Due to the plug-in architecture it is not difficult
for hidden interdependencies between Plug-ins and core components to be introduced.

• There are very few publications about the TIME modeling framework in the literature. This means
that the use of TIME has been restricted to users within Australia where interpersonal networks
have prevailed to promote awareness.

• There is no external presence for TIME such as a web site. If you are not a partner in the existing
eWater organisation you have no access to the code base.

• The current development and management of the TIME code base is heavily focused on the
Environmental Information Systems (EIS) group within CSIRO Land and Water. Such a defined locus
of development for TIME heightens potential negative consequences of organisational change.

• Licensing and IP “encumbrance” may be limiting the potential uptake of TIME. Anecdotal evidence
was provided by review participants of instances where TIME had been passed over for use in
scientific projects, as the current licensing, IP and commercial model is too restrictive.

9.3 Opportunities

• Open-Sourcing of the TIME code base would potentially expand the user base. Expanding the user
base may also broaden the developer base available to work on TIME. This would have the benefit
of reducing the reliance of TIME on the small developer base. Open sourcing would give access to a
much broader range of scientific disciplines. Broader adoption across a range of disciplines could
lead to increased and improved functionality. The code base is not currently amenable to broadly
available open sourcing as is, and would need some additional resourcing to realise this
opportunity. Open sourcing would also create an overhead in the management and communication
within the broader open source development community, but the potential benefits could be
significant. Changing TIME to an open source license without the overheads of making broadly
accessible could also realise some benefits in terms of ease of collaboration.

• Tidy up and promote the use of Visual TIME and TIME Shell as a means to accessing the
functionality of the TIME code base. Linking with scripting languages or incorporating TIME within
the CSIRO’s “WorkBench” software may provide may provide alternative means to the same end.

• Enhance and build on the existing documentation and make this more publicly available to broaden
the knowledge and understanding of the functionality in TIME within the scientific community.

CSIRO | 8BSWOT Analysis of TIME 26

• TIME has a relatively large existing user base across a diverse group of organisations within the
Australian hydrology domain, a number of who have significant influence on the future directions
of hydrologic modeling within Australia.

• The TIME development team has considerable knowledge and skills in scientific computing, data
management best practice and development environments and systems. There are numerous
groups external to the EIS group within CSIRO that could benefit significantly from these skills and
knowledge.

• There are a number of groups within CSIRO that specialize in dealing with large data sets. TIME
developers could leverage off these groups to enhance large data handling within TIME.

• There is a large base of scientific modelers utilising the Linux computing platform. With little effort
TIME can be made to run under Linux using the Mono compiler. This would give access to TIME
functionality to a much broader scientific user base.

• Promote the continued and expanded integration of TIME into scientific workflows used within
CSIRO and partner organisations

• A number of the scientific computing languages that are currently popular amongst the scientific
community, such as R and Python, are highly extensible and come with extensive packages of
functionality. Improving the interoperability/availability of TIME features through these languages
could be a very valuable path to adoption.

• There is a large scientific modeling community out there totally unaware of the capabilities of
TIME. Through increased levels of scientific publications describing the uses to which TIME is being
applied, a much broader potential user community can be informed of the existence of TIME.

• There is very little brand recognition of the TIME name. The main user group who affiliate with the
TIME name is the relatively small group of coders. Most users of TIME functionality are exposed to
it through applications built with TIME. Thus there is not broad awareness of a software product
called TIME. This presents an opportunity to consider re-branding TIME with a more descriptive
name that may improve identifiability and discoverability.

9.4 Threats

• The intellectual property rights for TIME are held in trust by eWater Limited on behalf of its partner
organisations. This arrangement as it currently exists is satisfies CSIRO’s requirements going
forward, but given that CSIRO is not ultimately in control of the fate of eWater there is potential
that these IP arrangements may change in the future.

• The development of the TIME code base has largely been driven by eWater Limited and its
predecessor CRC’s. eWater and its partners currently play a major role in providing the necessary
support for the development of TIME and setting the directions for the development of TIME. Until
recently, eWater provided financial support to the majority of developers working on TIME
development. The creation of eWater Limited is a new paradigm for delivering research and
development services to the hydrology community and as such there are inherent uncertainties as
to the long term outcome of this approach. Any diminution of eWater support will provide
challenges to the future development of TIME.

• The large majority of the TIME code base is written in the C# programming language. Whilst C# is
an industry standard language at the present, programming languages are continually evolving to
meets new demands. The Windows operating system is about to undergo some significant changes
and the impacts of these on support for the C# programming language are unclear. A fall in support
for C# amongst the programming community would potentially create issues for TIME although this
would be a slow process and provide plenty of opportunity to adapt.

• Organisational change within CSIRO is a threat to the future support of TIME. The core developer
team currently resides in a relatively small team (EIS) within CSIRO. This team has developed under
the prevailing CSIRO research priorities and strategic goals. As with all large organisations, these
priorities will change over time as will organisational structures. Being a relatively small group

CSIRO | 8BSWOT Analysis of TIME 27

within CSIRO, IES is susceptible to organisational change. At present there is a critical mass of
knowledge in the EIS to sustain TIME development, but in would not take a large reduction in
developer numbers to fall below critical levels.

• Until now, the development of TIME has largely been sponsored through large National science
funding initiatives formed around desired political outcomes. As the political landscape evolves
these funding initiatives may change focus into science domains not normally associated with the
development of TIME.

• Related to this, is the issue of strategic direction. If, in to the future, the development of TIME was
to be solely funded through ad-hoc project requirements, there is the risk that TIME will suffer
from a lack of strategic direction and regress in to an esoteric problem specific solution with little or
no relevance in the broader modeling framework domain.

• With the current changes in organisational arrangements that are occurring, there is potential that
disparate objectives of the various TIME development partners may emerge over time. Without
strong commitment from the development partners to support a unified code base, it would be
relatively easy to envision a divergence of the code base over time. This would be a serious
deleterious outcome.

• Internationally, the area of modeling framework development is an area of very active research
and development. There are also many freeware software products and code bases that provide
functionality comparable to various components of TIME. The utility of these comparable softwares
is rapidly increasing, often supported by large and active user bases. If the development of TIME
was to stagnate it would quickly lose relevance and possible forfeit the niche it presently fills.

CSIRO | 9BAlternatives to TIME 28

10 Alternatives to TIME

TIME was initially conceived and developed to fill an identified functionality gap in the modelling domain.
One of the guiding design principles of the TIME modelling framework was that uses should be able to do
as much of the data manipulation and analysis within the TIME framework as possible without having to
resort to expensive third party commercial solutions. At this time there were very few, if any, freely
available tools that had the range of functionality required to deliver optimal modelling solutions to the
scientific community. Thus, the original developers of TIME had to code a lot of functionality into TIME
from scratch.

In the ensuing years the open source community has been exceptionally active in addressing and delivering
solutions to the same types of problems that TIME provides solutions to. To this point, there appears to be
no one, freely available software framework that covers the complete TIME functionality gamut. There are
many commercial and free-ware alternatives to specific parts of the functionality provided by TIME, now in
existence. Below is a very brief summary of just a few freely available alternatives to sections of the TIME
functionality. Most if not all of these have very active development communities and are highly extensible
and multi platform compatible. These alternatives provide functionality across a broad spectrum of
scientific domains.

Spatial Analysis

GRASS is free Geographic Information System (GIS) software used for geospatial data management and
analysis, image processing, graphics/maps production, spatial modelling, and visualization.
(http://grass.fbk.eu/).

GDAL (Geospatial Data Abstraction Library) is a library for reading and writing raster geospatial data
formats, and is released under the permissive X/MIT style free software license by the Open Source
Geospatial Foundation It is already used by TIME to handle some spatial data formats. As a library, it
presents a single abstract data model to the calling application for all supported formats. It may also be
built with a variety of useful command-line utilities for data translation and processing.
(http://www.gdal.org/).

Quantum GIS (QGIS) is a powerful and user friendly Open Source Geographic Information System (GIS) that
runs on Linux, Unix, Mac OSX, Windows and Android. QGIS supports vector, raster, and database formats.
(http://www.qgis.org/).

DotSpatial is a geographic information system library written for .NET 4. It allows developers to incorporate
spatial data, analysis and mapping functionality into their. The free open source data viewer and GIS
package MapWindow is built on DotSpatial. (http://www.mapwindow.org/)

SAGA is the System for Automated Geoscientific Analyses. SAGA is a Geographic Information System (GIS)
software designed for an easy and effective implementation of spatial algorithms. SAGA offers a
comprehensive, growing set of geo-scientific methods. (http://www.saga-gis.org/en/index.html)

Temporal\Vector Analysis

R is a language and environment for statistical computing and graphics. R provides a wide variety of
statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification,
clustering etc) and graphical techniques, and is highly extensible. R is becoming widely used within the
general scientific community. (http://www.r-project.org/)

http://www.qgis.org/�
http://www.mapwindow.org/�
http://www.r-project.org/�

CSIRO | 9BAlternatives to TIME 29

Model Orchestration\Frameworks

The OpenMI (Open Modelling Interface), (Gregersen et al., 2007) standard defines an interface that allows
time-dependent models to exchange data at run-time. When the standard is implemented, existing models
can be run simultaneously and share information at each timestep making model integration feasible at the
operational level. OpenMI is merely a specification and relies on model developers doing their own
implementation.

 (http://www.openmi.org/)

The OMS (Amerman et al., 2002) is a framework consisting of: a library of science, control, and database
modules; a means to assemble the selected modules into a modelling package customized to the problem,
data constraints, and scale of application; an automatic generation of a friendly user interface; and creation
of a compiled, ready-to-run, version of the package. The framework is supported by utility modules such as
data dictionary, data retrieval, GIS, graphical visualization, and statistical analysis.

FABM the Framework for Aquatic Biogeochemical Models (Trolle et al., 2012) is a Fortran 90 programming
framework for biogeochemical models. FABM can interface with various hydrodynamic models, and
includes a repository of existing models of biogeochemical processes
(http://sourceforge.net/projects/fabm).

Whilst none of the available alternatives covers the breadth of functionality embodied in TIME, they are
currently possess vibrant development communities and are under active development. They are all
implement effective solutions to their particular domains. They all have a significant web presence which
supports discovery and subsequent development of these products.

It is interesting to note the niche that TIME continues to fill. There are very few, if any competing
alternatives to the fundamental scope of TIME, i.e. implementing a generalised modelling framework,
whilst providing a large range of concrete functionalities and tools.

It is clearly evident from this very brief review that there are many noteworthy alternatives to TIME but
none in a comprehensive, integrated environment. Given the extensible nature of most of these
alternatives it be wise practice in the future development of TIME to assess the specific capabilities of the
alternatives and where possible integrate with, and build on these alternatives.

http://www.openmi.org/�
http://sourceforge.net/projects/fabm�

CSIRO | 10BPotential Directions 30

11 Potential Directions

This section aims to suggest some possible areas of work into the future to improve on the existing TIME
code base. A number of the directions suggested have already been explored by various developers and
may have been partially implemented or built for a specific one off purpose. There are many specific
programming related improvements that could be made to TIME, but this section does not intend to go in
to great detail regarding these. It attempts to offer guidance on general directions which may enhance the
utility of TIME. Most if not all of these suggested activities will require significant investment and
commitment. Suggestions are made in no particular order.

11.1 Building on Existing Functionality

• Make TIME Open Source. The problem set that TIME addresses is by no means unique to the
existing user community. The utility of TIME may be a significant benefit to a broad range of
scientific disciplines. Open sourcing TIME would be an efficient means of opening these benefits to
a much broader user group. It may also have the benefit of increasing the resources available to
further improve the code base through contributions from third parties. The code could be made
open source and access to the code base could remain similar to what it is now i.e. relatively
restricted. This type of approach would open up a range of collaboration opportunities. The other
approach could be to make the code base more broadly publically available. If the code base was to
be made more broadly available it is suggested that future development is not open slather, but
rather a reasonably well managed process in which contributions would be assessed and
implemented in a structured manner. This approach has an associated overhead for the custodian
but the potential benefits may justify this cost. The code base in its current state is not highly suited
to immediate open access and would require significant commitment to get it to a standard
suitable for the open sourcing model.

• Make TIME Mono compatible. There is a large base of scientific modelers utilising the Linux
computing platform. With little effort the TIME code base can be made to run under Linux using the
Mono compiler. This would open up TIME functionality to a much broader scientific user base. This
would also remove the dependence on the Microsoft Windows operating system.

• Build a simple GUI for TIME. A graphical user interface called VisualTIME already exists. It was
designed to be a very generic and flexible GUI that provided access to a broad range of the TIME
code base functionality. To achieve this flexibility, the forms presented to users tend not to be that
easy to use or understand. A simple purpose built GUI that exposed some of the core functionality
and tools within TIME based around the spatial and temporal processing tools would potentially
open up TIME to a much broader range of non programming literate users. This GUI could build on
the existing VisualTIME GUI or be a new purpose built GUI.

• Build on model framework capabilities. A prototype application giving the ability to visually link
models together and run the result has previously been developed. The tool provides a rapid and
simple way to develop new modelling functionality and is accessible to users who are not
programmers (Rahman et al., 2005). It no longer seems to be in the code base. This tool should be
revisited and further developed to re-implement this functionality. This is a valuable application of
one of the core capabilities of TIME.

• Improve discoverability. One of the key blockages to increased uptake of the TIME code base is the
difficult nature of trying to actually ascertain exactly what TIME can do. This applies to both coders
and general users. No specific approach to this is recommended but it is mainly a communication
issue that could be addressed through documentation or simple discovery tools.

CSIRO | 10BPotential Directions 31

• Expand on the existing documentation. Whilst the existing documentation is a useful resource, it
does not fully cover the totality of TIME. A more comprehensive suite of documentation would
make it easier for users to be more productive more quickly. The current documentation is a static
suite of resources whereas TIME is a dynamic code base that evolves over time. A wiki based
documentation system may provide more flexibility to update the TIME documentation as needed
and simplify the process for developers to update information as required.

• Build on existing model orchestration links. The existing Source code base has classes for
implementing the OpenMI (Gregersen et al., 2007) standard to allow different models to
communicate during simulations. Investigations to determine if it is possible to implement this
functionality generically within the TIME modelling framework should be undertaken. This would
broaden the utility of models developed within TIME by allowing them to work in concert with
existing models and reducing the need for a one platform modelling solution.

• Build on web interface capabilities. Some work has already been done to develop simple web UI
capabilities in TIME. As well as this, CSIRO has also incorporated TIME into a number of web service
products for specific projects. With growing requirements for web based delivery of services it may
be appropriate to explore the option for making TIME more amenable to this mode of delivery. The
development of a generic web API for TIME would facilitate flexible delivery of TIME capabilities.
Modelling components within TIME could be implemented as web services.

11.2 New Functionality & Research

• Implement a scripting interface. TIME currently has purpose built simple scripting interface that
uses the Boo programming language (Oliveira, 2005), however this has never been utilised to any
great extent. Scripting is common in many scientific work flows and the Python scripting language
tends to be preferred by a significant portion of the scientific community. The implementation of a
scripting interface using a language such as Python would add significant utility to TIME.

• Implement parallel multi-threaded processing. Investigate the opportunities to introduce parallel
processing capabilities within the framework and build on the work Perraud et al. (2009) in this
domain. With modern CPU speeds starting to plateau due to physical limitations, performance
gains in modern computer hardware are being achieved through multi-core processing. Not all
aspects of the framework are amenable to parallel execution, but certain data processing tasks, in
particular raster data processing, could benefit significantly from this capacity. This is not
necessarily a simple task but a well considered implementation could have significant benefit.
Related to this, TIME should be made intrinsically thread safe where possible, to make robust when
deployed in modern multi-core architectures.

• Investigate distributed processing technologies. Similar to the previous point, many computational
performance gains are being made through distributed processing technologies. Previous
investigative work has been done on incorporating these approaches into TIME but with this
technology developing so rapidly it would be appropriate to undertake a review of the existing
approaches to this, with a view to implementing some core distributed processing architecture into
TIME.

• Full Integration of GDAL into TIME. The Geospatial Data Abstraction Library (GDAL) (Walter et al.,
2002) is an open source library for efficiently reading and writing raster and vector geospatial data
formats. It supports over 120 raster and over 10 vector geospatial data formats. It also has built in
projection support and a range of tools for processing geospatial data. Some integration of GDAL
into TIME has already been implemented for dealing with large rasters, but a more comprehensive
and native implementation should be considered.

• Large data processing capability. The core data classes within TIME were developed in the days
before the processing of large data sets was common. It would be appropriate to review modern
approaches and methods with the view to optimising the handling of large datasets within TIME.

CSIRO | 10BPotential Directions 32

• Distributed data capability. Given the types of analyses that TIME is typically used for, there is
often a requirement to access data from disparate geographical locations and custodians. This
makes the incorporation of distributed data access capabilities into the core TIME framework a
very attractive proposition. This is currently a very active area of development worldwide and
technologies such as OPeNDAP (Cornillon et al., 2003) are being deployed extensively. OPeNDAP is
a software framework for enabling distributed data access. Implementing OPeNDAP in TIME should
be investigated.

• GPU Processing. Another commonly used means of improving computational performance in
modern computing hardware is to utilise the General Processing Units within the computer to
perform calculation intensive operations. It would be useful to investigate the potential of this
approach in the TIME framework.

• Modernise GUI components. Much of the graphical user interface components of TIME are based
on Microsoft WinForms technologies. This is generally considered to be an outdated technology
and TIME would benefit from moving to one of the more modern approaches to GUI
implementation approaches such as Windows Presentation Foundation. WPF applications can be
deployed as standalone desktop programs, or hosted as an embedded object in a website.

• Dynamically link to R. The R data analysis environment has a broad range of powerful data analysis
and statistical methods. It is rapidly being adopted by the broader scientific community as a tool of
choice. Future data analysis requirements within TIME should leverage the capabilities already
present in the R data analysis environment.

CSIRO | 11BRecommendations 33

12 Recommendations

Recommendations are listed in a suggested order of importance

• CSIRO should use the shared code base resources and infrastructure currently being implemented
by eWater. Fragmentation of the TIME code base needs to be avoided at all costs and contributing
via the shared resources will facilitate this. At any point, if the need arose due to external
influences, it is a simple task for CSIRO to obtain a copy of the existing code base.

• A formal roadmap for the development of TIME in collaboration with partners should be
established. This would generate confidence amongst the user community in the long term viability
of utilising TIME

• A formal process to establish the development priorities for TIME should be undertaken. There are
many opportunities for further improvements and enhancements. Most of these will require
significant investment and commitment. Finite resourcing constraints dictate a need for a
considered approach.

• Where possible and appropriate, future development of TIME should integrate and or interoperate
with the range of alternative or complimentary freeware solutions in existence.

• Broader applications of TIME outside of the hydrology domain should be explored and encouraged.
• CSIRO should remain as an active participant in the further development of the TIME code base.

Given the significant investment and the broad range of internal and external dependencies for
delivery related to TIME, it would not be prudent to abandon the development and maintenance of
the TIME code base.

• The existence of the TIME framework should be promoted internally within CSIRO. They are many
existing and future research programmes that could benefit from the application of TIME
functionality.

• Where appropriate, CSIRO should continue to contribute to the development of TIME under the
proposed shared IP arrangement with eWater holding IP in trust for the partner organisations. A
considered decision as to the suitability of these IP arrangements should be made at the beginning
of any new major projects. In some circumstances CSIRO could consider not contributing to the
shared IP pool if CSIRO partnerships external to eWater had this requirement. This however, should
be avoided if possible.

• The TIME code base should be “tidied up” to enhance its flexibility and to remove its dependence
on other sections of the broader “eWater Source” code base, such that TIME becomes a generic
domain agnostic framework.

• Formal governance arrangements should be put in place to guide future development and
maintenance of the TIME code base. It is proposed that governance mechanisms be set up at three
levels to provide strategic direction and support for TIME : -

o Business Governance – a group to sponsor and support the ongoing maintenance,
development and applications of TIME. This group should consist of management level
members from CSIRO, eWater and partners at a minimum.

o Technical Governance – a group to provide technical direction to the future development
of TIME. This group should consist of technical members from CSIRO, eWater and partners
at a minimum.

o Operational Governance – arrangements similar to those that currently exist (Section 6) to
provide for the day to day oversight of the development and maintenance of TIME.

• CSIRO should consider if it supports open sourcing the TIME code base. This would come at a cost
and require ongoing commitment, but this has to be weighed up in terms of potential benefits in
terms of visibility, impact and international adoption. If this is determined to be a viable
development path, CSIRO would need to enter into discussions with eWater on this subject.

CSIRO | 12BReferences 34

13 References

AMERMAN, R., B. W., L. AHUJA, O. DAVID, J. WERNER, J. CARLSON, R. KNIGHTON AND L. G., 2002. THE OBJECT MODELING SYSTEM
(OMS): AN ADVANCED OBJECT-ORIENTED, MODULAR MODELING COMPUTER TECHNOLOGY FOR AGRICULTURAL
PRODUCTION SYSTEMS. FORT COLLINS, COLORADO.

ARMSTRONG, R., D. GANNON, A. GEIST, K. KEAHEY, S. KOHN, L. MCINNES, S. PARKER AND B. SMOLINSKI, 1999. TOWARD A
COMMON COMPONENT ARCHITECTURE FOR HIGH-PERFORMANCE SCIENTIFIC COMPUTING. IN: HIGH PERFORMANCE
DISTRIBUTED COMPUTING, 1999. PROCEEDINGS. THE EIGHTH INTERNATIONAL SYMPOSIUM ON. PP: 115-124.

CORNILLON, P., J. GALLAGHER AND T. SGOUROS, 2003. OPENDAP: ACCESSING DATA IN A DISTRIBUTED, HETEROGENEOUS
ENVIRONMENT. DATA SCIENCE JOURNAL, 2: 164-174.

FENTON, N., S.L. PFLEEGER AND R.L. GLASS, 1994. SCIENCE AND SUBSTANCE : A CHALLENGE TO SOFTWARE ENGINEERS. IN: IEEE
SOFTWARE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS.

GREGERSEN, J.B., P.J.A. GIJSBERS AND S.J.P. WESTEN, 2007. OPENMI: OPEN MODELLING INTERFACE. JOURNAL OF
HYDROINFORMATICS, 9(3): 175-191. AVAILABLE FROM
HTTP://CSIRO.SUMMON.SERIALSSOLUTIONS.COM/LINK/0/ELVHCXMWWYWPEMUB6TQ7LJLBGNGY0QVP7_UGG3AQRBIA
ESMV926IDCFURIHOHRRQIWJ0K81NJXSTJM0MKKZMLVOMDZONUOXNZJONJRNBNYMKFPMUC6MUCXMLG2QGTEOZTUX
MMK4ZSRBINE4XSTVJMRCWMBZIMEWZYKSWMGDPKDALC44ZX3OMNQBNZDZF. DOI 10.2166/HYDRO.2007.023.

LLOYD, W., O. DAVID, J.C. ASCOUGH, K.W. ROJAS, J.R. CARLSON, G.H. LEAVESLEY, P. KRAUSE, T.R. GREEN AND L.R. AHUJA, 2011.
ENVIRONMENTAL MODELING FRAMEWORK INVASIVENESS: ANALYSIS AND IMPLICATIONS. ENVIRONMENTAL MODELLING
AND SOFTWARE, 26(10): 1240-1250. AVAILABLE FROM
HTTP://CSIRO.SUMMON.SERIALSSOLUTIONS.COM/LINK/0/ELVHCXMWQYWZH5UHIENPRBQH4KA_LVIEBD9W0O6XCFCZB
6SI3K2UIDTNNCTZQXD6SYBUMUHSNF3J1BQZYYPDNMOU5FRGWJJJTUK0NKPMBP0RZMLKLMSAMGHKAJAYMGBSFQQM
MIALMGJVPFGKGSALPKVYJQEAMVJTWTQ85HYWAW1R2XF3YDXVBWDH6TON. DOI 10.1016/J.ENVSOFT.2011.03.011.

MARSTON, F., R. ARGENT, R. VERTESSY, S. CUDDY AND J. RAHMAN, 2002. THE STATUS OF CATCHMENT MODELLING IN AUSTRALIA.
IN: REPORT (COOPERATIVE RESEARCH CENTRE FOR CATCHMENT HYDROLOGY (AUSTRALIA)) ; 2002/04. CRC FOR
CATCHMENT HYDROLOGY, CLAYTON, VIC.: PP: VI, 39 P.

MEYER, B., 2001. .NET IS COMING [MICROSOFT WEB SERVICES PLATFORM]. COMPUTER, 34(8): 92-97. DOI 10.1109/2.940017.

MICROSOFT, 2012. CODE METRICS VALUES. IN: MSDN. MICROSOFT.

MURRAY, N., J.M. PERRAUD, J.M. RAHMAN, S.P. SEATON, H. HOTHAM, F.G.R. WATSON, R. BRIDGART AND G. DAVIS, 2006. TIME -
REFERENCE MANUAL.

OLIVEIRA, R.B.D., 2005. THE BOO PROGRAMMING LANGUAGE.

PERRAUD, J.-M.V., J; STENSON, M; BRIDGART, R, 2009. MULTI-THREADING AND PERFORMANCE TUNING A HYDROLOGIC MODEL: A
CASE STUDY 18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND
SIMULATION. MODELLING AND SIMULATION SOCIETY OF AUSTRALIA AND NEW ZEALAND AND INTERNATIONAL
ASSOCIATION FOR MATHEMATICS AND COMPUTERS IN SIMULATION, CAIRNS, PP. 1059 - 1065.

RAHMAN, J.M., J.M. PERRAUD, S.P. SEATON, H. HOTHAM, N. MURRAY, B. LEIGHTON , A. FREEBAIRN, G. DAVIS AND R. BRIDGART,
2005. EVOLUTION OF TIME. IN: A. ZERGER AND R. M. ARGENT, (EDS.) MODELLING AND SIMULATION SOCIETY OF
AUSTRALIA AND NEW ZEALAND.

http://csiro.summon.serialssolutions.com/LINK/0/ELVHCXMWWYWPEMUB6TQ7LJLBGNGY0QVP7_UGG3AQRBIAESMV926IDCFURIHOHRRQIWJ0K81NJXSTJM0MKKZMLVOMDZONUOXNZJONJRNBNYMKFPMUC6MUCXMLG2QGTEOZTUXMMK4ZSRBINE4XSTVJMRCWMBZIMEWZYKSWMGDPKDALC44ZX3OMNQBNZDZF�
http://csiro.summon.serialssolutions.com/LINK/0/ELVHCXMWWYWPEMUB6TQ7LJLBGNGY0QVP7_UGG3AQRBIAESMV926IDCFURIHOHRRQIWJ0K81NJXSTJM0MKKZMLVOMDZONUOXNZJONJRNBNYMKFPMUC6MUCXMLG2QGTEOZTUXMMK4ZSRBINE4XSTVJMRCWMBZIMEWZYKSWMGDPKDALC44ZX3OMNQBNZDZF�
http://csiro.summon.serialssolutions.com/LINK/0/ELVHCXMWWYWPEMUB6TQ7LJLBGNGY0QVP7_UGG3AQRBIAESMV926IDCFURIHOHRRQIWJ0K81NJXSTJM0MKKZMLVOMDZONUOXNZJONJRNBNYMKFPMUC6MUCXMLG2QGTEOZTUXMMK4ZSRBINE4XSTVJMRCWMBZIMEWZYKSWMGDPKDALC44ZX3OMNQBNZDZF�
http://csiro.summon.serialssolutions.com/LINK/0/ELVHCXMWQYWZH5UHIENPRBQH4KA_LVIEBD9W0O6XCFCZB6SI3K2UIDTNNCTZQXD6SYBUMUHSNF3J1BQZYYPDNMOU5FRGWJJJTUK0NKPMBP0RZMLKLMSAMGHKAJAYMGBSFQQMMIALMGJVPFGKGSALPKVYJQEAMVJTWTQ85HYWAW1R2XF3YDXVBWDH6TON�
http://csiro.summon.serialssolutions.com/LINK/0/ELVHCXMWQYWZH5UHIENPRBQH4KA_LVIEBD9W0O6XCFCZB6SI3K2UIDTNNCTZQXD6SYBUMUHSNF3J1BQZYYPDNMOU5FRGWJJJTUK0NKPMBP0RZMLKLMSAMGHKAJAYMGBSFQQMMIALMGJVPFGKGSALPKVYJQEAMVJTWTQ85HYWAW1R2XF3YDXVBWDH6TON�
http://csiro.summon.serialssolutions.com/LINK/0/ELVHCXMWQYWZH5UHIENPRBQH4KA_LVIEBD9W0O6XCFCZB6SI3K2UIDTNNCTZQXD6SYBUMUHSNF3J1BQZYYPDNMOU5FRGWJJJTUK0NKPMBP0RZMLKLMSAMGHKAJAYMGBSFQQMMIALMGJVPFGKGSALPKVYJQEAMVJTWTQ85HYWAW1R2XF3YDXVBWDH6TON�

CSIRO | 12BReferences 35

RAHMAN, J.M., S.P. SEATON, J.M. PERRAUD, H. HOTHAM, D.I. VERRELLI AND J.R. COLEMAN, 2003. IT'S TIME FOR A NEW
ENVIRONMENTAL MODELLING FRAMEWORK. MODSIM 2003 INTERNATIONAL CONGRESS ON MODELLING AND
SIMULATION(4): 1727-1732.

TROLLE, D., D. HAMILTON, M. HIPSEY, K. BOLDING, J. BRUGGEMAN, W. MOOIJ, J. JANSE, A. NIELSEN, E. JEPPESEN, J. ELLIOTT, V.
MAKLER-PICK, T. PETZOLDT, K. RINKE, M. FLINDT, G. ARHONDITSIS, G. GAL, R. BJERRING, K. TOMINAGA, J.T. HOEN, A.
DOWNING, D. MARQUES, C. FRAGOSO, M. SØNDERGAARD AND P. HANSON, 2012. A COMMUNITY-BASED FRAMEWORK
FOR AQUATIC ECOSYSTEM MODELS. HYDROBIOLOGIA, 683(1): 25-34. AVAILABLE FROM
HTTP://DX.DOI.ORG/10.1007/S10750-011-0957-0. DOI 10.1007/S10750-011-0957-0.

WALTER, G., F. WARMERDAM AND P. FARRIS-MANNING, 2002. AN OPEN SOURCE TOOL FOR GEOSPATIAL IMAGE EXPLOITATION.
IN: GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2002. IGARSS '02. 2002 IEEE INTERNATIONAL. PP: 3522-3524
VOL.3526.

WATSON, F.G.R. AND J.M. RAHMAN, 2004. TARSIER: A PRACTICAL SOFTWARE FRAMEWORK FOR MODEL DEVELOPMENT, TESTING
AND DEPLOYMENT. ENVIRONMENTAL MODELLING & SOFTWARE, 19(3): 245-260. AVAILABLE FROM
HTTP://WWW.SCIENCEDIRECT.COM/SCIENCE/ARTICLE/PII/S136481520300152X. DOI 10.1016/S1364-8152(03)00152-X.

http://dx.doi.org/10.1007/S10750-011-0957-0�
http://www.sciencedirect.com/SCIENCE/ARTICLE/PII/S136481520300152X�

CSIRO | 13BAppendix 1: TIME Functionality Table 36

14 Appendix 1: TIME Functionality Table

Applications\TIMEShell The command line interface for TIME

Applications\ToolkitLook Sample app demonstrating common visual components of TIME and
GUI guidelines

Applications\VisualTIME General purpose for analysing data and running models

Auxiliary\Addins Visual Studio plugins built by the TIME team

Auxiliary\Utils Various utilities for managing the TIME codebase eg documentation
and Latex tools

Core\Metadata Contains metadata definitions (tags)

Core\Uncertainty Methods for representing uncertainty in data

Core\Units Definitions representing units of data (eg mm per day, kg, m3, etc)

DataAnalysis\CalibrationTool Plugin for Visual TIME allowing optimisation of parameters of
temporal models

DataAnalysis\CellOrder Generates a processing order of a DEM based on elevation

DataAnalysis\DataConverters Components for converting between common datatypes eg raster to
polygons

DataAnalysis\RasterCropper Interactive tool for cropping rasters

DataAnalysis\RasterTemplate Examples of using the template (zonal) functions of rasters

DataAnalysis\RuleEngine Tool for manipulating data based on a set of objective rules

DataAnalysis\ShortestPath Finds the shortest path between a source node in a network and every
other node. Uses Dijkstra's algorithm.

DataAnalysis\SpatialDataTool Unfinished. Intended to be a VT plugin bringing together many spatial
functions into a common interface (like a miniARCView)

DataAnalysis\StatisticsTool Visual time plugin providing numerous statistics routines

DataAnalysis\Terrain mrVBF An old and incomplete Multi-res valley bottom flatness
implementation. There is a more up to date MrVBF in a class called
MrVBF.cs inside Terrain/TerrainAnalysis.

CSIRO | 13BAppendix 1: TIME Functionality Table 37

DataAnalysis\Terrain\Terrae Finite Element Modelling routines

DataAnalysis\Terrain\TerrainAnalysis , Collection of general purpose Terrain routines

DataAnalysis\TimeSeriesTransform Removed - do not use

DataAnalysis\UncertaintyAnalysis Tools for defining data uncertainty. Alpha.

DataAnalysis\VectorOperations A powerful set of tools written by Paul Peterson. Used for vector data
manipulation vector polygon etc. eg clip, buffer, etc.

DataAnalysis\ZonalOperations

DataTypes\IO Routines for loading and saving data

DataTypes\Metadata Metadata tags specific to datatypes & io types

DataTypes\NodeLinkNetwork Implementation of Node-link networks

DataTypes\Polygons Implementation of Polygons

DataTypes\RasterImplementation Internal implementation of Rasters

DataTypes\TimeSeriesImplementation Internal implementation of Time Series

NetLP Implementations of Network Linear Program Solvers

Science\Algebra Linear algebra (vectors etc)

Science\Economics

Science\Hydrology Where most fundamental hydrological methods should be located.
Currently a suite of baseflow filters.

Science\Mathematics Currently contains solvers for differential equations and root finders.

Science\Probability Contains/Should contain fomulas related to probability laws.

Science\Probability\Uncertainty This is where the implementation of classes handling data uncertainty
should be located.

Science\Probability\Random number generatros Tools for generating RNS according to different
distributions

Science\Statistics Contains/Should contain fomulas related to statistics (i.e. stuff that
tries to get a probabilistic description from data).

Science\Utils Currently, set of wheighting classes useful in ecomonics for multi-
attribute decision systems.

CSIRO | 13BAppendix 1: TIME Functionality Table 38

Testing\Models TIME models designed for testing purposes.

Testing\Prototyping

Testing\UnitTests

Tools\CanvasTool Prototype interactive linking of models. Used by the System Model
Tool.

Tools\DataTools Set of general purpose Data manipulation and evaluation tools
supporting optimisation tools, dynamic visualisation etc.

Tools\DIME Unfinished but in development. Distributed processing framework for
TIME.

Tools\ModelExecution Tools for coordinating simulation runs

Tools\Optimisation Tools for optimising model parameters

Tools\RasterGenerators Generating Test Rasters

Tools\Reflection Supporting metadata interrogation

Tools\Time Calendar routines

Tools\Utils Set of common array manipulation functions.

Tools\VisualTools Generation of automatic interfaces for models

Visualisation\Colors classes for using colour in TIME. Ie. ColorSchemes

Visualisation\Decorators The bits and pieces used to create viewControls. Ie. Axis, AxisLabels,
Chart Title.

Visualisation\Layers Most of the common layers for visually representing data in a
viewControl.

Visualisation\LegendItems Helper classes for drawing legends in viewControl

Visualisation\Symbols Small graphics for drawing points on layers in various shapes.

WebApplications\WebAR1 Example webapplication stochastic generation of annual rainfall data

Winforms\Canvas Visual representation of model linking

Winforms\Filesystem Visual components for interacting with file systems

Winforms\Parameters

Winforms\Processing

CSIRO | 13BAppendix 1: TIME Functionality Table 39

Winforms\ReflectedItems

Winforms\Resources

Winforms\Time Calendar/date selection

Winforms\ToolkitBadging controls for Toolkit look & feel (splash screens, badging etc)

Winforms\Utils Contains common tasks involving MessageBoxes.

Winforms\ViewEditing Controls for users to manipulate maps & charts

Winforms\Weighting Controls for weighing of data. Will be needed e.g. for Thiessen
weighting and gap filling.

CONTACT US
t 1300 363 400
 +61 3 9545 2176
e enquiries@csiro.au
w www.csiro.au

YOUR CSIRO
Australia is founding its future on science and innovation. Its national
science agency, CSIRO, is a powerhouse of ideas, technologies and
skills for building prosperity, growth, health and sustainability. It
serves governments, industries, business and communities across
the nation.

FOR FURTHER INFORMATION
Land & Water/Environmental Information
Systems
Ross Searle
t +61 738335606
e ross.searle@csiro.au
w http://my.csiro.au/en/Business-
Units/Environment/Land-and-Water.aspx

	Contents
	Acknowledgments
	Executive summary
	1 Introduction and Purpose of Review
	2 History of TIME
	3 What is TIME
	3.1 Defining TIME in Terms of the Code Base
	3.2 Functionality
	3.3 TIME Context

	4 Intellectual Property Rights Considerations
	5 Systems Infrastructure
	5.1 Arrangements Post June 2012

	6 Governance Framework
	7 Critical Dependencies
	8 Code Base Quality and Health
	9 SWOT Analysis of TIME
	9.1 Strengths
	9.2 Weaknesses
	9.3 Opportunities
	9.4 Threats

	10 Alternatives to TIME
	Spatial Analysis
	Temporal\Vector Analysis
	Model Orchestration\Frameworks

	11 Potential Directions
	11.1 Building on Existing Functionality
	11.2 New Functionality & Research

	12 Recommendations
	13 References
	14 Appendix 1: TIME Functionality Table

